Secondary wall deposition in tracheary elements of cucumber grown in vitro

1998 ◽  
Vol 41 (4) ◽  
pp. 515-522 ◽  
Author(s):  
S. Kaliamoorthy ◽  
K.V. Krishnamurthy
IAWA Journal ◽  
1996 ◽  
Vol 17 (4) ◽  
pp. 431-444 ◽  
Author(s):  
Mitsuo Suzuki ◽  
Kiyotsugu Yoda ◽  
Hitoshi Suzuki

Initiation of vessel formation and vessel maturation indicated by secondary wall deposition have been compared in eleven deciduous broadleaved tree species. In ring-porous species the first vessel element formation in the current growth ring was initiated two to six weeks prior to the onset of leaf expansion, and secondary wall deposition on the vessel elements was completed from one week before to three weeks after leaf expansion. In diffuse-porous species, the first vessel element formation was initiated two to seven weeks after the onset of leaf expansion, and secondary wall deposition was completed four to nine weeks after leaf expansion. These results suggest that early maturation of the first vessel elements in the ring-porous species will serve for water conduction in early spring. On the contrary, the late maturation of the first vessel elements in the diffuse-porous species indicates that no new functional vessels exist at the time of the leaf expansion.


2019 ◽  
Vol 123 (7) ◽  
pp. 1257-1265 ◽  
Author(s):  
Valentina Buttò ◽  
Sergio Rossi ◽  
Annie Deslauriers ◽  
Hubert Morin

Abstract Background and Aims Secondary growth is a process related to the formation of new cells that increase in size and wall thickness during xylogenesis. Temporal dynamics of wood formation influence cell traits, in turn affecting cell patterns across the tree ring. We verified the hypothesis that cell diameter and cell wall thickness are positively correlated with the duration of their differentiation phases. Methods Histological sections were produced by microcores to assess the periods of cell differentiation in black spruce [Picea mariana (Mill.) B.S.P.]. Samples were collected weekly between 2002 and 2016 from a total of 50 trees in five sites along a latitudinal gradient in Quebec (Canada). The intra-annual temporal dynamics of cell differentiation were estimated at a daily scale, and the relationships between cell traits and duration of differentiation were fitted using a modified von Bertalanffy growth equation. Key Results At all sites, larger cell diameters and cell wall thicknesses were observed in cells that experienced a longer period of differentiation. The relationship was a non-linear, decreasing trend that occasionally resulted in a clear asymptote. Overall, secondary wall deposition lasted longer than cell enlargement. Earlywood cells underwent an enlargement phase that lasted for 12 d on average, while secondary wall thickness lasted 15 d. Enlargement in latewood cells averaged 7 d and secondary wall deposition occurred over an average of 27 d. Conclusions Cell size across the tree ring is closely connected to the temporal dynamics of cell formation. Similar relationships were observed among the five study sites, indicating shared xylem formation dynamics across the entire latitudinal distribution of the species.The duration of cell differentiation is a key factor involved in cell growth and wall thickening of xylem, thereby determining the spatial variation of cell traits across the tree ring.


1992 ◽  
Vol 101 (3) ◽  
pp. 561-577
Author(s):  
ROBERT W. SEAGULL

A quantitative electron microscopic (E/M) study of the changes in microtubule arrays and wall microfibril orientation has been done on in vitro grown cotton fibers. Microtubules change orientation during cotton fiber development. During fiber initiation and early elongation, microtubules have a generally random orientation. Microtubules re-orient into shallow pitched helices as elongation and primary wall deposition continue, and into steeply pitched helices during secondary wall deposition. Accompanying the changes in orientation are increases in microtubule length, number, proximity to the plasmalemma and a decreased variability in orientation of the microtubules. Based on these observations, three pivotal stages in microtubule patterns were identified during fiber development: (1) the transition between fiber initiation and elongation, where microtubules develop a shallow pitched helical orientation; (2) the transition between primary and secondary wall synthesis, where microtubules abruptly shift orientation to a steeply pitched helical pattern; and (3) early in secondary wall synthesis, where there is a four fold increase in microtubule number. Microfibrils exhibit changes in orientation similar to the microtubules; however significant differences were found when the precise orientations of microtubules and microfibrils were compared. During secondary wall synthesis, wall microfibrils exhibit some variability in orientation due to inter-fibril bundling, thus indicating that components of the wall may also influence final microfibril orientation.


2011 ◽  
Vol 5 (S7) ◽  
Author(s):  
Isabel R Gerhardt ◽  
Silvia B Filippi ◽  
Vagner Okura ◽  
Jaime Coutinho ◽  
Ana P Rizzato ◽  
...  

PLoS ONE ◽  
2016 ◽  
Vol 11 (1) ◽  
pp. e0146460 ◽  
Author(s):  
Youxi Yuan ◽  
Quincy Teng ◽  
Ruiqin Zhong ◽  
Marziyeh Haghighat ◽  
Elizabeth A. Richardson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document