Editor's Note: T-Models of "Sphere" in General Relativity Theory by V. A. Ruban and Spherically Symmetric T-Models in the General Theory of Relativity by V. A. Ruban

2001 ◽  
Vol 33 (2) ◽  
pp. 363-367 ◽  
Author(s):  
Andrzej Krasiński
2021 ◽  
Author(s):  
Sangwha Yi

In the general relativity theory, we discover new vacuum solution by Einstein’s gravity field equation. We investigate the new coordinate in cosmological general theory of relativity (CGTR).


2021 ◽  
Author(s):  
Sangwha Yi

In expanded universe, we found gravity field equation and solution. We found Schwarzschildsoluti on, Kerr-Newman solution in expanded universe. Hence, We found new general relativity theory-Cosmological General Theory of Relativity(CGTR).


2014 ◽  
Vol 23 (08) ◽  
pp. 1450068 ◽  
Author(s):  
O. Goldoni ◽  
M. F. A. da Silva ◽  
G. Pinheiro ◽  
R. Chan

In this paper, we have studied nonstationary radiative spherically symmetric spacetime, in general covariant theory (U(1) extension) of Hořava–Lifshitz (HL) gravity without the projectability condition and in the infrared (IR) limit. The Newtonian prepotential φ was assumed null. We have shown that there is not the analogue of the Vaidya's solution in the Hořava–Lifshitz Theory (HLT), as we know in the General Relativity Theory (GRT). Therefore, we conclude that the gauge field A should interact with the null radiation field of the Vaidya's spacetime in the HLT.


2021 ◽  
Vol 58 (4) ◽  
pp. 175-195
Author(s):  
Vladimir P. Vizgin ◽  

The article is based on the concepts of epistemic virtues and epistemic vices and explores A. Einstein’s contribution to the creation of fundamental physical theories, namely the special theory of relativity and general theory of relativity, as well as to the development of a unified field theory on the basis of the geometric field program, which never led to success. Among the main epistemic virtues that led Einstein to success in the construction of the special theory of relativity are the following: a unique physical intuition based on the method of thought experiment and the need for an experimental justification of space-time concepts; striving for simplicity and elegance of theory; scientific courage, rebelliousness, signifying the readiness to engage in confrontation with scientific conventional dogmas and authorities. In the creation of general theory of relativity, another intellectual virtue was added to these virtues: the belief in the heuristic power of the mathematical aspect of physics. At the same time, he had to overcome his initial underestimation of the H. Minkowski’s four-dimensional concept of space and time, which has manifested in a distinctive flexibility of thinking typical for Einstein in his early years. The creative role of Einstein’s mistakes on the way to general relativity was emphasized. These mistakes were mostly related to the difficulties of harmonizing the mathematical and physical aspects of theory, less so to epistemic vices. The ambivalence of the concept of epistemic virtues, which can be transformed into epistemic vices, is noted. This transformation happened in the second half of Einstein’s life, when he for more than thirty years unsuccessfully tried to build a unified geometric field theory and to find an alternative to quantum mechanics with their probabilistic and Copenhagen interpretation In this case, we can talk about the following epistemic vices: the revaluation of mathematical aspect and underestimation of experimentally – empirical aspect of the theory; adopting the concepts general relativity is based on (continualism, classical causality, geometric nature of fundamental interactions) as fundamental; unprecedented persistence in defending the GFP (geometrical field program), despite its failures, and a certain loss of the flexibility of thinking. A cosmological history that is associated both with the application of GTR (general theory of relativity) to the structure of the Universe, and with the missed possibility of discovering the theory of the expanding Universe is intermediate in relation to Einstein’s epistemic virtues and vices. This opportunity was realized by A.A. Friedmann, who defeated Einstein in the dispute about if the Universe was stationary or nonstationary. In this dispute some of Einstein’s vices were revealed, which Friedman did not have. The connection between epistemic virtues and the methodological principles of physics and also with the “fallibilist” concept of scientific knowledge development has been noted.


It is shown how to obtain, within the general theory of relativity, equations of motion for two oscillating masses at the ends of a spring of given law of force. The method of Einstein, Infeld & Hoffmann is used, and the force in the spring is represented by a stress singularity. The detailed calculations are taken to the Newtonian order.


2021 ◽  
Author(s):  
Manfred Geilhaupt

Abstract Derivation of mass (m), charge (e) and fine structure constant (FSC) from theory are unsolved problems in physics up to now. Neither the Standard Model (SM) nor the General theory of Relativity (GR) has provided a complete explanation for mass, charge and FSC. The question “of what is rest mass” is therefore still essentially unanswered. We will show that the combination of two Principle Theories, General Relativity and Thermodynamics (TD), is able to derive the restmass of an electron (m) which surprisingly depends on the (Sommerfeld) FSC (same for the charge (e)).


2017 ◽  
Vol 9 (5) ◽  
pp. 29
Author(s):  
Valery Vasiliev

The paper is concerned with the spherically symmetric static problem of the General Relativity Theory. The classical solution of this problem found in 1916 by K. Schwarzschild for a particular metric form results in singular space metric coefficient and provides the basis of the objects referred to as Black Holes. A more general metric form applied in the paper allows us to obtain the solution which is not singular. The critical radius of the fluid sphere, following from this solution does not coincide with the traditional gravitational radius. For the spheres with radii that are less than the critical value, the solution of GRT problem does not exist.


2020 ◽  
Vol 35 (08) ◽  
pp. 2050045
Author(s):  
Nisha Godani ◽  
Gauranga C. Samanta

Morris and Thorne1 proposed traversable wormholes, hypothetical connecting tools, using the concept of Einstein’s general theory of relativity. In this paper, the modification of general relativity (in particular [Formula: see text] theory of gravity defined by Harko et al.2) is considered, to study the traversable wormhole solutions. The function [Formula: see text] is considered as [Formula: see text], where [Formula: see text] and [Formula: see text] are controlling parameters. The shape and redshift functions appearing in the metric of wormhole structure have significant contribution in the development of wormhole solutions. We have considered both variable and constant redshift functions with a logarithmic shape function. The energy conditions are examined, geometric configuration is analyzed and the radius of the throat is determined in order to have wormhole solutions in absence of exotic matter.


Science ◽  
2019 ◽  
Vol 365 (6454) ◽  
pp. 664-668 ◽  
Author(s):  
Tuan Do ◽  
Aurelien Hees ◽  
Andrea Ghez ◽  
Gregory D. Martinez ◽  
Devin S. Chu ◽  
...  

The general theory of relativity predicts that a star passing close to a supermassive black hole should exhibit a relativistic redshift. In this study, we used observations of the Galactic Center star S0-2 to test this prediction. We combined existing spectroscopic and astrometric measurements from 1995–2017, which cover S0-2’s 16-year orbit, with measurements from March to September 2018, which cover three events during S0-2’s closest approach to the black hole. We detected a combination of special relativistic and gravitational redshift, quantified using the redshift parameter ϒ. Our result, ϒ = 0.88 ± 0.17, is consistent with general relativity (ϒ = 1) and excludes a Newtonian model (ϒ = 0) with a statistical significance of 5σ.


1994 ◽  
Vol 03 (02) ◽  
pp. 393-419 ◽  
Author(s):  
MASATOSHI YAZAKI

The possibility of a new extension of the general relativistc theory will be considered using Finsler geometry. The extension of Einstein’s general relativity can be expected to regard gravitational, electroweak, and strong interactive fields as geometrical structure of a spacetime based on Finsler geometry. Indeed, it will be shown that this theory can include the general theory of relativity under a certain special condition. In addition, Maxwell’s equations will be expressed using new metric representations of the electromagnetic vector and its tensor. Moreover, it will be suggested that this theory may include metric representations of weak and strong interactive fields.


Sign in / Sign up

Export Citation Format

Share Document