Modelling The Mean Velocity Profile In The Urban Canopy Layer

2000 ◽  
Vol 97 (1) ◽  
pp. 25-45 ◽  
Author(s):  
R. W. Macdonald
Author(s):  
Shinji Honami ◽  
Wataru Tsuboi ◽  
Takaaki Shizawa

This paper presents the effect of flame dome depth on the total pressure performance and flow behavior in a sudden expansion region of the combustor diffuser without flow entering the dome head. The mean velocity and turbulent Reynolds stress profiles in the sudden expansion region were measured by a Laser Doppler Velocitmetry (LDV) system. The experiments show that total pressure loss is increased, when flame dome depth is increased. Installation of an inclined combuster wall in the sudden expansion region is suggested from the viewpoint of a control of the reattaching flow. The inclined combustor wall is found to be effective in improvement of the diffuser performance. Better characteristics of the flow rate distribution into the branched channels are obtained in the inclined wall configuration, even if the distorted velocity profile is provided at the diffuser inlet.


2019 ◽  
Vol 99 (6) ◽  
Author(s):  
Benoît Pinier ◽  
Etienne Mémin ◽  
Sylvain Laizet ◽  
Roger Lewandowski

1982 ◽  
Vol 119 ◽  
pp. 423-441 ◽  
Author(s):  
M. A. Goldshtik ◽  
V. V. Zametalin ◽  
V. N. Shtern

We propose a simplified theory of a viscous layer in near-wall turbulent flow that determines the mean-velocity profile and integral characteristics of velocity fluctuations. The theory is based on the concepts resulting from the experimental data implying a relatively simple almost-ordered structure of fluctuations in close proximity to the wall. On the basis of data on the greatest contribution to transfer processes made by the part of the spectrum associated with the main size of the observed structures, the turbulent fluctuations are simulated by a three-dimensional running wave whose parameters are found from the problem solution. Mathematically the problem reduces to the solution of linearized Navier-Stokes equations. The no-slip condition is satisfied on the wall, whereas on the outer boundary of a viscous layer the conditions of smooth conjunction with the asymptotic shape of velocity and fluctuation-energy profiles resulting from the dimensional analysis are satisfied. The formulation of the problem is completed by the requirement of maximum curvature of the mean-velocity profile on the outer boundary applied from stability considerations.The solution of the problem does not require any quantitative empirical data, although the conditions of conjunction were formulated according to the well-known concepts obtained experimentally. As a result, the near-wall law for the averaged velocity has been calculated theoretically and is in good agreement with experiment, and the characteristic scales for fluctuations have also been determined. The developed theory is applied to turbulent-flow calculations in Maxwell and Oldroyd media. The elastic properties of fluids are shown to lead to near-wall region reconstruction and its associated drag reduction, as is the case in turbulent flows of dilute polymer solutions. This theory accounts for several features typical of the Toms effect, such as the threshold character of the effect and the decrease in the normal fluctuating velocity. The analysis of the near-wall Oldroyd fluid flow permits us to elucidate several new aspects of the drag-reduction effect. It has been established that the Toms effect does not always result in thickening of the viscous sublayer; on the contrary, the most intense drag reduction takes place without thickening in the viscous sublayer.


2002 ◽  
Vol 124 (3) ◽  
pp. 664-670 ◽  
Author(s):  
Donald J. Bergstrom ◽  
Nathan A. Kotey ◽  
Mark F. Tachie

Experimental measurements of the mean velocity profile in a canonical turbulent boundary layer are obtained for four different surface roughness conditions, as well as a smooth wall, at moderate Reynolds numbers in a wind tunnel. The mean streamwise velocity component is fitted to a correlation which allows both the strength of the wake, Π, and friction velocity, Uτ, to vary. The results show that the type of surface roughness affects the mean defect profile in the outer region of the turbulent boundary layer, as well as determining the value of the skin friction. The defect profiles normalized by the friction velocity were approximately independent of Reynolds number, while those normalized using the free stream velocity were not. The fact that the outer flow is significantly affected by the specific roughness characteristics at the wall implies that rough wall boundary layers are more complex than the wall similarity hypothesis would allow.


Sign in / Sign up

Export Citation Format

Share Document