Operational Variants of the Minimum Mean Squared Error Estimator in Linear Regression Models with Non-Spherical Disturbances

2000 ◽  
Vol 52 (2) ◽  
pp. 332-342 ◽  
Author(s):  
Alan T. K. Wan ◽  
Anoop Chaturvedi
2012 ◽  
Vol 45 (16) ◽  
pp. 1629-1634 ◽  
Author(s):  
Diego Eckhard ◽  
Håkan Hjalmarsson ◽  
Cristian R. Rojas ◽  
Michel Gevers

Healthcare ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 525
Author(s):  
Samer A Kharroubi

Background: Typically, modeling of health-related quality of life data is often troublesome since its distribution is positively or negatively skewed, spikes at zero or one, bounded and heteroscedasticity. Objectives: In the present paper, we aim to investigate whether Bayesian beta regression is appropriate for analyzing the SF-6D health state utility scores and respondent characteristics. Methods: A sample of 126 Lebanese members from the American University of Beirut valued 49 health states defined by the SF-6D using the standard gamble technique. Three different models were fitted for SF-6D via Bayesian Markov chain Monte Carlo (MCMC) simulation methods. These comprised a beta regression, random effects and random effects with covariates. Results from applying the three Bayesian beta regression models were reported and compared based on their predictive ability to previously used linear regression models, using mean prediction error (MPE), root mean squared error (RMSE) and deviance information criterion (DIC). Results: For the three different approaches, the beta regression model was found to perform better than the normal regression model under all criteria used. The beta regression with random effects model performs best, with MPE (0.084), RMSE (0.058) and DIC (−1621). Compared to the traditionally linear regression model, the beta regression provided better predictions of observed values in the entire learning sample and in an out-of-sample validation. Conclusions: Beta regression provides a flexible approach to modeling health state values. It also accounted for the boundedness and heteroscedasticity of the SF-6D index scores. Further research is encouraged.


2014 ◽  
Vol 2014 ◽  
pp. 1-7
Author(s):  
Guikai Hu ◽  
Qingguo Li ◽  
Shenghua Yu

Under a balanced loss function, we derive the explicit formulae of the risk of the Stein-rule (SR) estimator, the positive-part Stein-rule (PSR) estimator, the feasible minimum mean squared error (FMMSE) estimator, and the adjusted feasible minimum mean squared error (AFMMSE) estimator in a linear regression model with multivariateterrors. The results show that the PSR estimator dominates the SR estimator under the balanced loss and multivariateterrors. Also, our numerical results show that these estimators dominate the ordinary least squares (OLS) estimator when the weight of precision of estimation is larger than about half, and vice versa. Furthermore, the AFMMSE estimator dominates the PSR estimator in certain occasions.


Author(s):  
Warha, Abdulhamid Audu ◽  
Yusuf Abbakar Muhammad ◽  
Akeyede, Imam

Linear regression is the measure of relationship between two or more variables known as dependent and independent variables. Classical least squares method for estimating regression models consist of minimising the sum of the squared residuals. Among the assumptions of Ordinary least squares method (OLS) is that there is no correlations (multicollinearity) between the independent variables. Violation of this assumptions arises most often in regression analysis and can lead to inefficiency of the least square method. This study, therefore, determined the efficient estimator between Least Absolute Deviation (LAD) and Weighted Least Square (WLS) in multiple linear regression models at different levels of multicollinearity in the explanatory variables. Simulation techniques were conducted using R Statistical software, to investigate the performance of the two estimators under violation of assumptions of lack of multicollinearity. Their performances were compared at different sample sizes. Finite properties of estimators’ criteria namely, mean absolute error, absolute bias and mean squared error were used for comparing the methods. The best estimator was selected based on minimum value of these criteria at a specified level of multicollinearity and sample size. The results showed that, LAD was the best at different levels of multicollinearity and was recommended as alternative to OLS under this condition. The performances of the two estimators decreased when the levels of multicollinearity was increased.


2016 ◽  
Vol 34 (1) ◽  
Author(s):  
Sharad Saxena ◽  
Housila P. Singh

The dispersion parameter of a chi-distributed radial error is of interest in numerous target analysis problems as a measure of weapon-system accuracy, and it is often of practical importance to estimate it. This paper presents a few classical estimators including the maximum likelihood estimator, an unbiased estimator and a minimum mean squared error estimator of this dispersion for both when the origin or “center of impact” is knownor can be assumed as known and when it is unknown. Some families of shrinkage estimators have also been suggested when a prior point estimate of the dispersion parameter is available in addition to sample information. The estimators of circular error probable and spherical error probable have been obtained as well. A simulation study has been carried out to demonstrate the performance of the proposed estimators.


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0259991
Author(s):  
Iqra Babar ◽  
Hamdi Ayed ◽  
Sohail Chand ◽  
Muhammad Suhail ◽  
Yousaf Ali Khan ◽  
...  

Background The problem of multicollinearity in multiple linear regression models arises when the predictor variables are correlated among each other. The variance of the ordinary least squared estimator become unstable in such situation. In order to mitigate the problem of multicollinearity, Liu regression is widely used as a biased method of estimation with shrinkage parameter ‘d’. The optimal value of shrinkage parameter plays a vital role in bias-variance trade-off. Limitation Several estimators are available in literature for the estimation of shrinkage parameter. But the existing estimators do not perform well in terms of smaller mean squared error when the problem of multicollinearity is high or severe. Methodology In this paper, some new estimators for the shrinkage parameter are proposed. The proposed estimators are the class of estimators that are based on quantile of the regression coefficients. The performance of the new estimators is compared with the existing estimators through Monte Carlo simulation. Mean squared error and mean absolute error is considered as evaluation criteria of the estimators. Tobacco dataset is used as an application to illustrate the benefits of the new estimators and support the simulation results. Findings The new estimators outperform the existing estimators in most of the considered scenarios including high and severe cases of multicollinearity. 95% mean prediction interval of all the estimators is also computed for the Tobacco data. The new estimators give the best mean prediction interval among all other estimators. The implications of the findings We recommend the use of new estimators to practitioners when the problem of high to severe multicollinearity exists among the predictor variables.


1987 ◽  
Vol 3 (2) ◽  
pp. 299-304 ◽  
Author(s):  
Judith A. Clarke ◽  
David E. A. Giles ◽  
T. Dudley Wallace

We derive exact finite-sample expressions for the biases and risks of several common pretest estimators of the scale parameter in the linear regression model. These estimators are associated with least squares, maximum likelihood and minimum mean squared error component estimators. Of these three criteria, the last is found to be superior (in terms of risk under quadratic loss) when pretesting in typical situations.


2022 ◽  
pp. 1-25
Author(s):  
Vishal Mehta

In this chapter, the authors suggest some improved versions of estimators of Morgenstern type bivariate exponential distribution (MTBED) based on the observations made on the units of ranked set sampling (RSS) regarding the study variable Y, which is correlated with the auxiliary variable X, where (X,Y) follows a MTBED. In this chapter, they firstly suggested minimum mean squared error estimator for estimation of 𝜃2 based on censored ranked set sample and their special case; further, they have suggested minimum mean squared error estimator for best linear unbiased estimator of 𝜃2 based on censored ranked set sample and their special cases; they also suggested minimum mean squared error estimator for estimation of 𝜃2 based on unbalanced multistage ranked set sampling and their special cases. Efficiency comparisons are also made in this work.


Sign in / Sign up

Export Citation Format

Share Document