Biological treatments to control bacterial canker of greenhouse tomatoes

BioControl ◽  
2004 ◽  
Vol 49 (3) ◽  
pp. 305-313 ◽  
Author(s):  
Raj Utkhede ◽  
Carol Koch
2009 ◽  
Vol 10 (1) ◽  
pp. 19 ◽  
Author(s):  
David M. Ingram ◽  
Shi-En Lu

AgriPhage applied as a preventative foliar spray significantly reduced severity of bacterial canker of greenhouse tomato in two of three years. Area under the disease progress curves (AUDPC) indicated that AgriPhage slowed the progression of bacterial canker symptom development by 50% and 59% in 2006 and 2007, respectively. Plant mortality was significantly reduced by 76% in 2006 as compared to the inoculated control. AgriPhage-treated plants produced significantly greater total yield in 2006 only. Copper and Kasumin sprays also significantly reduced severity (AUDPC) of bacterial canker in 2007 as compared to the inoculated control. However, none of these treatments reduced symptom development or increased yield in 2008. Accepted for publication 9 April 2009. Published 12 May 2009.


2008 ◽  
Vol 69 (1) ◽  
pp. 125-134 ◽  
Author(s):  
Czesław Ślusarski

Attempts at Biological Control ofClavibacter michiganensissubsp.michiganensisOn Rockwool-Grown Greenhouse TomatoesTwo greenhouse experiments were conducted in which tomato plants artificially inoculated withClavibacter michiganensissubsp.michiganensis(Cmm) were grown in an open rockwool system as spring and autumn crops. Two isolates of the rhizosphere bacteria,Pseudomonas fluorescensstrain PSR21,Pseudomonas reactansstrain GGS14, a commercial biocontrol agent Aqua Bac Plus (Bacillusspp.) and a proprietary disinfectant containing QAC+Chx, applied at weekly intervals, were evaluated for their efficiency in the suppression of the bacterial canker of tomato. All treatments tested revealed to be ineffective in controlling the disease. The introduction ofCmmbacteria into the fresh rockwool in the first year of its usage resulted in a 100% death of tomato plants, whereas following an artificial inoculation of two- and three-year-old rockwool slabs withCmmbacteria dead plants amounted to 70 and 58%, respectively. This indicates that in the re-used rockwool a natural microbial suppressiveness to bacterial canker of tomato might be developed in the root zone.


2015 ◽  
Vol 65 (3) ◽  
pp. 484-495 ◽  
Author(s):  
G. M. Ialacci ◽  
P. Bella ◽  
G. Licciardello ◽  
C. P. Strano ◽  
R. Eichenlaub ◽  
...  

Fruits ◽  
2013 ◽  
Vol 68 (1) ◽  
pp. 45-55 ◽  
Author(s):  
Tiesen Cao ◽  
Theodore M. Dejong ◽  
Kenneth A. Shackel ◽  
Bruce C. Kirkpatrick ◽  
R. Scott Johnson

Author(s):  
M.N. AL-Rukabi ◽  
◽  
V.I. Leunov

Greenhouse tomatoes are divided into early, medium and late-maturing. The days from seedling germination to the first harvest are taken into account. Tomato has a huge potential for heterosis in terms of precocity, overall yield, signs of resistance and uniformity. The preferred agricultural method is hydroponics, which allows you to grow plants without using soil, only using mineral nutrient solutions in water. The cultivation of tomato plants on the " Fitopyramida " will allow to sell their products in the periods with the highest realized prices. An experiment on variety testing of 11 tomato hybrids of different product groups that differ in precocity allowed us to select the most adapted to the conditions of the " Fitopyramida " technology, including the indeterminate beef Ruddy ball F1, cherry hybrids Elf F1 and orange-fruited cherry Magic harp F1. the determinant hybrid Captain F1 showed Good results.


2017 ◽  
Vol 70 ◽  
pp. 310-314
Author(s):  
J.L. Tyson ◽  
S.J. Dobson ◽  
M.A. Manning

Pseudomonas syringae pv. actinidiae (Psa) causes bacterial canker of kiwifruit, which is an ongoing threat to New Zealand kiwifruit production. Disease control depends on orchard practices such as removal of visibly diseased material, pruning during low-risk periods, and the application of foliar bactericides. Although the use of copper compounds on Actinidia species (kiwifruit) can cause phytotoxicity, copper-based formulations remain a key component of Psa control in New Zealand. The effect of single copper applications on Psa infection of ‘Hort16A’ trap plants was studied over the Spring of 2014 (Sept—Nov). Psa leaf spots were observed at the beginning of October, appearing first on the untreated plants. Although the copper sprays did not achieve complete protection, particularly as the inoculum built up during November, the copper-sprayed plants always had less disease than the untreated plants.


Hilgardia ◽  
1933 ◽  
Vol 8 (3) ◽  
pp. 83-123 ◽  
Author(s):  
Edward E. Wilson

Sign in / Sign up

Export Citation Format

Share Document