Fractions of organic carbon in soils under different crop rotations, cover crops and fertilization practices

2004 ◽  
Vol 70 (2) ◽  
pp. 161-166 ◽  
Author(s):  
Z. Yang ◽  
B.R. Singh ◽  
B.K. Sitaula
2021 ◽  
Author(s):  
Daria Seitz ◽  
Lisa Mareen Fischer ◽  
Rene Dechow ◽  
Axel Don

<p>Cover crops have been suggested to preserve or even increase the soil organic carbon (SOC) stocks in croplands which can contribute to soil fertility and climate change mitigation. Cover crop cultivation increased in most European countries during the last years. However, it remains unquantified how many additional cover crops can be integrated into existing crop rotations. Moreover, there are no realistic quantitative estimates of the SOC sequestration potential of implementing additional cover crops in Germany.</p><p>We analyzed recent German crop rotations obtained from the first German Agricultural Soil Inventory for available cultivation windows (winter fallows) for cover crops, and we simulated the SOC sequestration potential of additional cover crops in the topsoil using a SOC model ensemble consisting of RothC and C-TOOL. In order to estimate a reasonable carbon input via the cover crops’ biomass, we developed a new allometric function which takes the effect of the weather and the seeding date on the development of the biomass into account.</p><p>Our study shows that only one third of the cultivation windows are currently used for cultivating cover crops. Thus, the cover crops’ cultivation area could be tripled with additional 2 Mio ha each year. With these additional cover crops, the annual C input could be increased by 12% from 3.68 to 4.13 Mg C ha<sup>-1</sup> a<sup>-1</sup>. Within 50 years, this would result in 35 Tg more SOC in the top 30cm of German croplands which corresponds to 2.6 Tg CO<sub>2</sub> equivalents per year. Despite the dry weather conditions, a considerably large increase in SOC can be achieved in the eastern regions of Germany due to a low current cover crop cultivation frequency. However, the limited water availability during the time of cover crop establishment may require undersowing.</p><p>We conclude that including cover crops in crop rotations and consequently avoiding bare fallow in winter is a key measure in a climate mitigation strategy for managing cropland soils, and we will discuss the benefits and barriers of growing cover crops in Germany and Europe.</p>


Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 724
Author(s):  
Marco Pittarello ◽  
Nicola Dal Ferro ◽  
Francesca Chiarini ◽  
Francesco Morari ◽  
Paolo Carletti

Intensive agricultural practices are leading to loss of soil fertility and overexploitation of natural resources which cause nutrients imbalance and further impair ecosystem services. Organic farming (OF), also coupled with minimum tillage and crop rotations, represents one of the strategies to limit this process and maintain soil functions. In a two-year field trial, organic farming practices, including a set of fertilizations combined with crop rotations and association with nitrogen fixing cover crops, were compared. The aim of this research was to assess in the short-term the effects on soil organic carbon, aggregate stability, and soil enzymes activities of using a combination of promising management practices in the delta region of the Po river. Results did not show improvements in organic carbon content and soil aggregate stability. Conversely, enzymatic activities were always significantly higher in OF treatments than the conventional one. Crop rotation and associated legumes were effective in enhancing β-glucosidase and P fixation through phosphatases activities. The present work suggests that an effective choice of crop species coupled with legumes can enhance biological activity re-starting main mechanisms of microbial development even without a contemporary increase of organic matter.


Agronomy ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1393
Author(s):  
Karin S. Levin ◽  
Karl Auerswald ◽  
Hans Jürgen Reents ◽  
Kurt-Jürgen Hülsbergen

Combining organic farming and biogas production from agricultural feedstocks has been suggested as a way of achieving carbon (C) neutrality in Europe. However, as the long-term effects of C removal for methane production on soil organic carbon (SOC) are unclear, organic farmers in particular have questioned whether farm biogas production will have a positive effect on soil fertility. Eight years of data from an organic long-term field trial involving digestate fertilisation and various crop rotations (CRs) with differing proportions of clover-grass leys were used to calculate C inputs based on the CANDY model, and these modelled changes compared with measured changes in SOC content (SOCc) over the same period. Measured SOCc increased by nearly 20% over the eight years. Digestate fertilisation significantly increased SOCc. Fertilised plots with the highest proportion of clover-grass in the CR had the highest SOCc. The C inputs from clover-grass leys, even if they only made up 25% of the CR, were high enough to increase SOCc, even with the removal of all aboveground biomass and without fertilisation. Our results show that biogas production based on clover-grass leys could be an important part of sustainable farming, improving or maintaining SOCc and improving nutrient flows, particularly in organic farming, while simultaneously providing renewable energy.


Author(s):  
Robert P. Larkin

Crop rotations and the inclusion of cover crops and green manures are primary tools in the sustainable management of soil-borne diseases in crop production systems. Crop rotations can reduce soil-borne disease through three general mechanisms: (1) serving as a break in the host-pathogen cycle; (2) by altering the soil physical, chemical, or biological characteristics to stimulate microbial activity and diversity; or (3) directly inhibiting pathogens through the release of suppressive or toxic compounds or the enhancement of specific antagonists. Brassicas, sudangrass, and related plant types are disease-suppressive crops well-known for their biofumigation potential but also have other effects on soil microbiology that are important in disease suppression. The efficacy of rotations for reducing soil-borne diseases is dependent on several factors, including crop type, rotation length, rotation sequence, and use of the crop (as full-season rotation, cover crop, or green manure). Years of field research with Brassica and non-Brassica rotation crops in potato cropping systems in Maine have documented the efficacy of Brassica green manures for the reduction of multiple soil-borne diseases. However, they have also indicated that these crops can provide disease control even when not incorporated as green manures and that other non-biofumigant crops (such as barley, ryegrass, and buckwheat) can also be effective in disease suppression. In general, all crops provided better disease control when used as green manure vs. as a cover crop, but the addition of a cover crop can improve control provided by most rotation crops. In long-term cropping system trials, rotations incorporating multiple soil health management practices, such as longer rotations, disease-suppressive rotation crops, cover crops, and green manures, and/or organic amendments have resulted in greater yield and microbial activity and fewer disease problems than standard rotations. These results indicate that improved cropping systems may enhance productivity, sustainability, and economic viability.


2007 ◽  
Vol 94 (1) ◽  
pp. 122-132 ◽  
Author(s):  
Aurélie Metay ◽  
José Aloisio Alves Moreira ◽  
Martial Bernoux ◽  
Thomas Boyer ◽  
Jean-Marie Douzet ◽  
...  

Agronomy ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 840 ◽  
Author(s):  
Ahmed Laamrani ◽  
Paul R. Voroney ◽  
Aaron A. Berg ◽  
Adam W. Gillespie ◽  
Michael March ◽  
...  

The impacts of tillage practices and crop rotations are fundamental factors influencing changes in the soil carbon, and thus the sustainability of agricultural systems. The objective of this study was to compare soil carbon status and temporal changes in topsoil from different 4 year rotations and tillage treatments (i.e., no-till and conventional tillage). Rotation systems were primarily corn and soy-based and included cereal and alfalfa phases along with red clover cover crops. In 2018, soil samples were collected from a silty-loam topsoil (0–15 cm) from the 36 year long-term experiment site in southern Ontario, Canada. Total carbon (TC) contents of each sample were determined in the laboratory using combustion methods and comparisons were made between treatments using current and archived samples (i.e., 20 year and 9 year change, respectively) for selected crop rotations. Overall, TC concentrations were significantly higher for no-till compared with conventional tillage practices, regardless of the crop rotations employed. With regard to crop rotation, the highest TC concentrations were recorded in corn–corn–oats–barley (CCOB) rotations with red clover cover crop in both cereal phases. TC contents were, in descending order, found in corn–corn–alfalfa–alfalfa (CCAA), corn–corn–soybean–winter wheat (CCSW) with 1 year of seeded red clover, and corn–corn–corn–corn (CCCC). The lowest TC concentrations were observed in the corn–corn–soybean–soybean (CCSS) and corn–corn–oats–barley (CCOB) rotations without use of cover crops, and corn–corn–soybean–winter wheat (CCSW). We found that (i) crop rotation varieties that include two consecutive years of soybean had consistently lower TC concentrations compared with the remaining rotations; (ii) TC for all the investigated plots (no-till and/or tilled) increased over the 9 year and 20 year period; (iii) the no-tilled CCOB rotation with 2 years of cover crop showed the highest increase of TC content over the 20 year change period time; and (iv) interestingly, the no-till continuous corn (CCCC) rotation had higher TC than the soybean–soybean–corn–corn (SSCC) and corn–corn–soybean–winter wheat (CCSW). We concluded that conservation tillage (i.e., no-till) and incorporation of a cover crop into crop rotations had a positive effect in the accumulation of TC topsoil concentrations and could be suitable management practices to promote soil fertility and sustainability in our agricultural soils.


Sign in / Sign up

Export Citation Format

Share Document