Low cycle fatigue properties of Al-Li-Cu-Mg-Zr alloy processed by equal-channel angular pressing

2004 ◽  
Vol 39 (2) ◽  
pp. 733-735 ◽  
Author(s):  
S. M. Liu ◽  
Z. G. Wang
2008 ◽  
Vol 385-387 ◽  
pp. 721-724
Author(s):  
W.H. Kim ◽  
H.H. Cho ◽  
J.H. Cha ◽  
S.I. Kwun ◽  
Dong Hyuk Shin

The effects of equal channel angular pressing (ECAP) and subsequent heat treatment on the low cycle fatigue properties of 6005 Al alloy were investigated. The ECAPed specimens showed cyclic softening, whereas the peak aged specimens showed cyclic hardening at all strain amplitudes. After ECAP, artificial aging was performed at 175°C to observe the change of the low cycle fatigue properties due to precipitation. The fatigue life and behavior of the unECAPed and ECAPed 6005 Al alloys were discussed in terms of the microstructural changes and aging conditions.


Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1191
Author(s):  
Ryuichi Yamada ◽  
Shoichiro Yoshihara ◽  
Yasumi Ito

A stent is employed to expand a narrowed tubular organ, such as a blood vessel. However, the persistent presence of a stainless steel stent yields several problems of late thrombosis, restenosis and chronic inflammation reactions. Biodegradable magnesium stents have been introduced to solve these problems. However, magnesium-based alloys suffer from poor ductility and lower than desired fatigue performance. There is still a huge demand for further research on new alloys and stent designs. Then, as fundamental research for this, AZ31 B magnesium alloy has been investigated for the effect of equal-channel angular pressing on the fatigue properties. ECAP was conducted for one pass and eight passes at 300 °C using a die with a channel angle of 90°. An annealed sample and ECAP sample of AZ31 B magnesium alloy were subjected to tensile and fatigue tests. As a result of the tensile test, strength in the ECAP (one pass) sample was higher than in the annealed sample. As a result of the fatigue test, at stress amplitude σa = 100 MPa, the number of cycles to failure was largest in the annealed sample, medium in the ECAP (one pass) sample and lowest in the ECAP (eight passes) sample. It was suggested that the small low cycle fatigue life of the ECAP (eight passes) sample is attributable to severe plastic deformation.


2019 ◽  
Vol 36 (1) ◽  
pp. 118-126
Author(s):  
Qingyan Zhu ◽  
Lijia Chen ◽  
Guangqi Zhu ◽  
Xiaoran Huo

Author(s):  
Mohammad Bagher Limooei ◽  
Morteza Zandrahimi ◽  
Ramin Ebrahimi

In the present work, equal channel angular pressing of commercial pure aluminum 1070 was performed up to 4 passes using route Bc. For equal channel angular pressing operation, a suitable die set was designed and manufactured. X-ray diffraction analysis was used to determine the microstructure of the equal channel angular pressing-ed material. The fracture surface morphology and microstructure after fatigue were investigated by scanning electron microscopy. Mechanical properties of the equal channel angular pressing-ed material were evaluated by hardness and tension tests. Also, cyclic deformation behavior of severe plastic deformation Al1070 has been studied and results show a significant variation in hardness, ultimate strength and fatigue properties in high cycle fatigue life. Coefficient of fatigue strength σ′f and Bridgman correction factor have been obtained by S-N curve and tension test specimens, respectively, and compared before and after equal channel angular pressing process. Also an useful relation has been derived between fatigue life ( Nf) and stress amplitude ( σa) in high cycle fatigue region. Results indicated that there was not clear relation between fatigue strength coefficient and true corrected fracture stress in this case.


2019 ◽  
Vol 158 ◽  
pp. 109940 ◽  
Author(s):  
Wang Junfeng ◽  
Chen Jinshui ◽  
Guo Chengjun ◽  
Zhang Jianbo ◽  
Xiao Xiangpeng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document