The effect of aluminum addition on the damping capacity of cast iron

2004 ◽  
Vol 39 (19) ◽  
pp. 6097-6099 ◽  
Author(s):  
Xinbao Liu ◽  
S. Takamori ◽  
Y. Osawa
Alloy Digest ◽  
1964 ◽  
Vol 13 (1) ◽  

Abstract MEEHANITE-GD is a high strength iron casting having high damping capacity, self-lubricating properties, and good machinability. It combines the good properties of both cast iron and steel. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and compressive and shear strength as well as fracture toughness and fatigue. It also includes information on casting, heat treating, machining, and joining. Filing Code: CI-32. Producer or source: Meehanite Metal Corporation.


Alloy Digest ◽  
1954 ◽  
Vol 3 (1) ◽  

Abstract MEEHANITE GA is a high strength iron casting having high damping capacity, self-lubricating properties, and good machinability. It combines the good properties of both cast iron and steel. Applications include machine tools, gears, shafts, and housings. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and compressive and shear strength as well as fracture toughness and fatigue. It also includes information on heat treating and machining. Filing Code: CI-5. Producer or source: Meehanite Metal Corporation.


Alloy Digest ◽  
2020 ◽  
Vol 69 (9) ◽  

Abstract ISO 185/JL/225 is an intermediate-tensile-strength gray cast iron that has a predominantly pearlitic matrix, and a tensile strength of 225–325 MPa (33-47 ksi), when determined on test pieces machined from separately cast, 30 mm (1.2 in.) diameter test bars. Compared with the lower strength gray cast iron grades, ISO 185/JL/225 contains lower carbon and silicon contents, while still maintaining excellent thermal conductivity, damping capacity, and machinability. This datasheet provides information on composition, physical properties, tensile properties, and compressive strength as well as fatigue. It also includes information on heat treating. Filing Code: CI-73. Producer or source: International Organization for Standardization (ISO).


Alloy Digest ◽  
2021 ◽  
Vol 70 (3) ◽  

Abstract ISO 185/JL/275 is an intermediate-tensile-strength gray cast iron that has a pearlitic matrix and a tensile strength of 275–375 MPa (40–54 ksi), when determined on test pieces machined from separately cast, 30 mm (1.2 in.) diameter test bars. Compared with the lower strength gray cast iron grades, ISO 185/JL/275 contains lower carbon and silicon contents, while still maintaining good thermal conductivity and damping capacity. Owing to its higher tensile strength and hardness, it exhibits superior wear properties. This datasheet provides information on composition, physical properties, elasticity, tensile properties, and bend strength as well as fatigue. It also includes information on casting and heat treating. Filing Code: CI-79. Producer or source: International Organization for Standardization.


2017 ◽  
Vol 69 (2) ◽  
pp. 241-247 ◽  
Author(s):  
H. Siddhi Jailani ◽  
A. Rajadurai ◽  
B. Mohan ◽  
T. Sornakumar

Purpose Metal matrix composites (MMCs) are commonly used in many aerospace and industrial applications. MMCs possess significantly improved properties including high specific strength, specific modulus, damping capacity and good wear resistance compared to unreinforced alloys. The purpose of this paper is to describe the tribological studies of Al-Si alloy–fly ash composites manufactured using powder metallurgy technique. Design/methodology/approach Al-Si (12 Wt.%) alloy–fly ash composites were developed using powder metallurgy technique. Al-Si alloy powder was used as matrix material, and the fly ash was used as reinforcement. The particle size of Al-Si alloy powder was in the range of 75-300 μm, and the fly ash was in the range of 1-15 μm. The friction and wear characteristics of the composites were studied using a pin-on-disc set up. The test specimen was mated against cast iron disc, and the tests were conducted with the loads of 10, 20 and 30 N, sliding speeds of 0.5, 1 and 1.5 m/s for a sliding distance of 2,000 m. Findings The effects of load and sliding speed on tribological properties of the base alloy and Al-Si alloy–fly ash composites pins on sliding with cast iron disc are evaluated. The wear rate of Al-Si alloy–fly ash composites is lower than that of base alloy, and it increases with increasing load and sliding speed. The coefficient of friction of Al-Si alloy–fly ash composites is increased as compared with base alloy. Practical implications The development of Al-Si alloy–fly ash composites produced by powder metallurgy technique will modernize the automobile and other industries because near net shape at low cost and good mechanical properties are obtained. Originality/value There are few papers available on the development and tribological studies of Al-Si alloy–fly ash composites produced by powder metallurgy technique.


2020 ◽  
Vol 27 (2) ◽  
pp. 190-199 ◽  
Author(s):  
Gülşah Aktaş Çelik ◽  
Maria-Ioanna T. Tzini ◽  
Şeyda Polat ◽  
Ş. Hakan Atapek ◽  
Gregory N. Haidemenopoulos

2010 ◽  
Vol 457 ◽  
pp. 79-83 ◽  
Author(s):  
Mitsuharu Takita

Semi-solid metal processing with the cooling plate technique is one of the key technologies for producing advanced materials. The multitude of cast iron families with their wide range of mechanical properties, and relatively low costs combined with the advantage of semi-solid processing allow production of high quality cast components from cast iron. The effect of semi-solid processing using the cooling plate technique on the microstructure and the properties of cast iron is studied. The investigated material is hypo-eutectic, hyper-eutectic gray iron, compacted graphite and ductile cast iron. The results indicated that the microstructure (primary austenite and graphite) becomes finer and more globular by increasing the fraction of solid. The tensile strength of semi-solid processed cast iron is relatively high compared with ordinary cast iron. The values of both the tensile strength and the elongation depend on the fraction of solid. The total fracture strength is observed to depend on the graphite morphology as well as the matrix contribution that mainly depends on fraction of solid. The wear resistance and damping capacity of cast iron were investigated as a function of the relative amount of primary fraction of solid.


1980 ◽  
Vol 12 (3) ◽  
pp. 360-363 ◽  
Author(s):  
S. A. Golovin ◽  
V. A. Kuzmenko ◽  
G. D. Petrushin ◽  
N. N. Pis'mennyi ◽  
I. I. Renne

2009 ◽  
Vol 50 (6) ◽  
pp. 1390-1395 ◽  
Author(s):  
Chang-Yong Kang ◽  
Jang-Hyun Sung ◽  
Gwang-Ho Kim ◽  
Byoung-Suhk Kim ◽  
Ick-Soo Kim

Alloy Digest ◽  
1955 ◽  
Vol 4 (10) ◽  

Abstract MEEHANITE GE is a medium strength iron having high damping capacity, self-lubricating properties, and good machinability. It combines the good properties of both cast iron and steel. Applications include machine tools, gears, shafts, housings, pump bodies, valve bodies, steam cylinders, cylinder liners, casings, cylinder heads, and governor frames. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and compressive and shear strength as well as fracture toughness. It also includes information on casting, heat treating, and machining. Filing Code: CI-12. Producer or source: Meehanite Metal Corporation.


Sign in / Sign up

Export Citation Format

Share Document