Long-Term Variations in the Vertical Thermohaline Structure in Deep-Water Zones of the Caspian Sea

2004 ◽  
Vol 31 (4) ◽  
pp. 376-383 ◽  
Author(s):  
V. S. Tuzhilkin ◽  
A. N. Kosarev
2021 ◽  
Vol 101 (2) ◽  
pp. 80-87
Author(s):  
A.G Terekhov ◽  
◽  
N.I. Ivkina ◽  
N.N. Abayev ◽  
A.V. Galayeva ◽  
...  

The Snow Depth FEWS NET daily product was used to analyze snowy regime of the upper part of the River Emba basin from January 1 to April 30 for the period of 2001...2020. The Emba River basin is situated in Kazakhstan at the Eastern coast of the Caspian Sea. The area is characterized by the arid and extreme continental climate with dry-steppe and semi-desert landscapes. The population is small and the anthropogenic impact on the snow cover is minimal there. These conditions give an opportunity to identify the natural tendency in long-term changes of snow covering in semidesert zone of Kazakhstan. This paper describes the characteristics of the formation and destruction of the snow cover in the last 20 years. It was indicated that snowy regime has a trigger structure including two states; low-snowy regime and others years. It was shown that the snowy conditions are triggered. There are two modes, the first, as a low-snowy regime (up to 50 % of the entire sample) and the second mode includes other years. Significant variations of snow depth in various years masked many years’ tendencies of snow cover characteristics. But low-snowy regime was observed four times during five last years that can relate with modern decreasing snow covering in semi-desert zone of Kazakhstan.


2020 ◽  
pp. 269-305
Author(s):  
V.N. Malinin ◽  
S.M. Gordeeva ◽  
Yu.V. Mitina ◽  
O.I. Shevchuk

Study of sea level is being developed at RSHU in several directions: global, regional and local. The global one includes the study of the patterns of interannual fluctuations of the global sea level (GLS), identification of their genesis and development of a set of methods for its long-term forecast. Two approaches to the genesis of GLS are considered. In foreign studies, changes in GLS are determined by changes in the water mass of various cryosphere components, land water reserves and steric level fluctuations. Another approach, implemented at RSHU, is to assess contributions of various factors using the equation of the freshwater balance of the World Ocean as the sum of eustatic and steric factors. A physical-statistical method for two-decade GLS forecasting, based on delay in the GLS response to air temperature over the ocean, has been developed, as well as the GLS projections at the end of the century for climatic scenarios according to the CMIP5 project have been provided. In the regional context, the main attention is paid to identifying the genesis of the interannual variability of the Caspian Sea level with the aim of its long-term forecasting. The entire chain of cause-and-effect relationships in the North Atlantic-atmosphere-Volga basin-Caspian level system is discussed. It has been established that, as a result of the intensification of cyclonic activity in the North Atlantic, especially in the Norwegian Sea, caused by the processes of large-scale interaction between the ocean and the atmosphere, there is an increase in evaporation and in the zonal transfer of water vapour to Europe and then to the Volga basin. Therefore, more precipitation falls in the runoff-forming zone of the basin, the annual runoff of the Volga and the level of the Caspian Sea increasing. The reverse is observed with weakening of cyclonic activity in the North Atlantic. In view of this, the level of the Caspian Sea is an integral indicator of largescale moisture exchange in the ocean-atmosphere-land system. The article discusses the features of interannual sea level fluctuations in Kronstadt since 1836. A simple two-parameter model for forecasting sea level by the end of the 21st century is proposed for major climate scenarios, the predictors being the GSL and the North Atlantic Oscillation. According to the most realistic forecast, the level in Kronstadt may rise to 34-59 cm (Baltic system) by the end of the century, while according to the “pessimistic” one — to 80-90 cm (Baltic system). The estimates of the extreme storm surge at which the level rise north of the Gorskaya can reach 600 cm (Baltic system) are given. The effect of flooding from storm surges is especially strong near Sestroretsk. The total area of possible flooding of the Kurortny district at a 4-m high surge wave exceeds 1260 hectares, all the beaches being completely lost. The trajectories of flood cyclones and their role for periods of climate warming and cooling are considered


2020 ◽  
Vol 47 (2) ◽  
pp. 348-357
Author(s):  
T. Yu. Vyruchalkina ◽  
N. A. Dianskii ◽  
V. V. Fomin

2015 ◽  
Vol 55 (1) ◽  
pp. 162-164
Author(s):  
L. A. Dukhova ◽  
E. A. Serebrennikova ◽  
A. K. Ambrosimov ◽  
A. A. Klyuvitkin

2000 ◽  
Vol 47 (4) ◽  
pp. 621-654 ◽  
Author(s):  
F. Peeters ◽  
R. Kipfer ◽  
D. Achermann ◽  
M. Hofer ◽  
W. Aeschbach-Hertig ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document