Flavodoxin as a diagnostic indicator of chronic iron limitation in the Ross Sea and New Zealand sector of the Southern Ocean

Author(s):  
Jennifer M. Maucher ◽  
Giacomo R. DiTullio
2021 ◽  
Vol 9 (1) ◽  
pp. 84-107
Author(s):  
Karen N. Scott

Abstract In 2016, the Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR) designated the largest marine protected area (MPA) in the Ross Sea. Hailed as both a precedent and a prototype for MPAs in both Antarctica and in areas beyond national jurisdiction more generally, it is nevertheless proving challenging to implement. Moreover, further MPAs have yet to be designated in the region although a number are under negotiation. This article will evaluate the contribution made by CCAMLR to the implementation of SDG 14.5 (the conservation of at least 20 per cent of marine and coastal areas by 2020), its relationship to area-based protection under the 1991 Environmental Protocol, and highlight the challenges of establishing MPAs beyond the jurisdiction of states.


2018 ◽  
Vol 12 (9) ◽  
pp. 3033-3044 ◽  
Author(s):  
Xiying Liu

Abstract. To study the influence of basal melting of the Ross Ice Shelf (BMRIS) on the Southern Ocean (ocean southward of 35∘ S) in quasi-equilibrium, numerical experiments with and without the BMRIS effect were performed using a global ocean–sea ice–ice shelf coupled model. In both experiments, the model started from a state of quasi-equilibrium ocean and was integrated for 500 years forced by CORE (Coordinated Ocean-ice Reference Experiment) normal-year atmospheric fields. The simulation results of the last 100 years were analyzed. The melt rate averaged over the entire Ross Ice Shelf is 0.25 m a−1, which is associated with a freshwater flux of 3.15 mSv (1 mSv = 103 m3 s−1). The extra freshwater flux decreases the salinity in the region from 1500 m depth to the sea floor in the southern Pacific and Indian oceans, with a maximum difference of nearly 0.005 PSU in the Pacific Ocean. Conversely, the effect of concurrent heat flux is mainly confined to the middle depth layer (approximately 1500 to 3000 m). The decreased density due to the BMRIS effect, together with the influence of ocean topography, creates local differences in circulation in the Ross Sea and nearby waters. Through advection by the Antarctic Circumpolar Current, the flux difference from BMRIS gives rise to an increase of sea ice thickness and sea ice concentration in the Ross Sea adjacent to the coast and ocean water to the east. Warm advection and accumulation of warm water associated with differences in local circulation decrease sea ice concentration on the margins of sea ice cover adjacent to open water in the Ross Sea in September. The decreased water density weakens the subpolar cell as well as the lower cell in the global residual meridional overturning circulation (MOC). Moreover, we observe accompanying reduced southward meridional heat transport at most latitudes of the Southern Ocean.


Zootaxa ◽  
2009 ◽  
Vol 2096 (1) ◽  
pp. 395-412 ◽  
Author(s):  
BRENDA LÍA DOTI ◽  
MADHUMITA CHOUDHURY ◽  
ANGELIKA BRANDT

A new genus of Paramunnidae, Holodentata (type species: Paramunna gaussi Vanhöffen, 1914) is erected. The new genus comprises two new species: H. caeca, from the deep Weddell Sea and H. triangulata, from the Ross Sea. The new genus is distinguished by the following characters: article 3 of the antenna short and with strong denticles, mandible palp absent, article 2 of maxilliped palp longest, coxal plates visible in dorsal view in all pereonites, pleotelson broad and laterally denticulated.


2021 ◽  
Author(s):  
◽  
Caitlyn Shannon

<p>The global marine environment is currently facing unprecedented anthropomorphic change and stress. One such stressor is plastic pollution, which has continually increased in magnitude since mass production began in the 1940’s. An increase in plastic debris throughout the oceans not only results in an infiltration of the pollutants throughout the entirety of the marine environment, but also increases the risk that it impacts the physiological, structural, and behavioural traits of various organisms – including humans. These negative interactions are particularly likely with microplastic particles (< 5 mm), as they can enter and be transferred throughout the food web with ease. However, research in the field of microplastic pollution is extremely one-sided, with most present studies focusing on the Northern Hemisphere. Additionally, comparatively little has been investigated regarding temporal and spatial patterns of microplastic occurrence. The aim of this research was to 1) examine the abundance and distribution of synthetic particles in sub-surface waters of the Southern Ocean, across broad temporal and spatial scales and 2) examine finer-scale spatial and temporal patterns of microplastic load within the urbanised Wellington Harbour, New Zealand, using a combination of environmental and biological indicators.  To assess the broad-scales of temporal and spatial variation in the Southern Ocean, annual Continuous Plankton Recorder (CPR) tows were undertaken between New Zealand waters and the Ross Sea, Antarctica, over a span of 9 years (the austral summers of 2009/10 – 2017/18) and a range of 5 oceanographic zones and two frontal systems, totalling a distance of approximately 22,000 km. Overall, patterns were inconsistent, with no constant increase or decrease in load throughout the years, while spatial variation was minimal and not associated with particular oceanographic fronts or proximity to an urban area. Despite no consistent spatial variation, temporal differences did occur between years. Again, there were no identifiably consistent trends across years (i.e. a gradual increase), but there was a substantial peak in 2009/10 and a trough in 2012/13. Such changes are likely due to large-scale variations in ocean circulation systems, along with environmental drivers such as El Niño and La Niña events.  To investigate the microplastic load in a more urbanised environment, 3-monthly surveys were undertaken with surface waters, beach sediments, and M. gallloprovincialis mussels in Wellington Harbour, New Zealand, using samples from three sites for beach and mussel surveys, and two sites for the surface water tows. Weekly variation was also measured for beach sediments and mussel tissues. Again, no consistency was observed in temporal or spatial variation for any environmental or biological indicator, however the average pollutant loads were on par with reported results in other literature, particularly for M. galloprovincialis tissues. Temporally, the peak microplastic load in the tissues of the mussel, M. galloprovincialis, appeared to correlate with the peak load found within the surface waters of the harbour, indicating a possible relationship between plastic pollution in the environment and that which is found within organisms. Finally, the spatial variation observed within beach sediments was far larger than that seen throughout the mussel tissues, supporting the idea that beach sediments are microplastic sinks, but also susceptible to a range of environmental drivers including wind strength, wind direction, and sediment erosion.  Throughout the Southern Ocean and within Wellington Harbour, particle characteristics were similar, in that microfibres were the prevailing synthetic morphotype – accounting for upwards of 90% of all particles found. These results are similar to reports from other current literature, but not associated with public knowledge that is currently in the media and represented in the legislation. The results of this thesis illustrate the importance of monitoring and managing the occurrence and effect of microplastics on both fine- and broad-scales of temporal and spatial variation and helps address the knowledge gap surrounding microplastics in the Southern Hemisphere.</p>


2015 ◽  
Vol 12 (11) ◽  
pp. 8429-8465 ◽  
Author(s):  
H. B. DeJong ◽  
R. B. Dunbar ◽  
D. A. Mucciarone ◽  
D. A. Koweek

Abstract. Predicting when surface waters of the Ross Sea and Southern Ocean will become undersaturated with respect to biogenic carbonate minerals is challenging in part due to the lack of baseline high resolution carbon system data. Here we present ~ 1700 surface total alkalinity measurements from the Ross Sea and along a transect between the Ross Sea and southern Chile from the austral autumn (February–March 2013). We calculate the saturation state of aragonite (ΩAr) and calcite (ΩCa) using measured total alkalinity and pCO2. In the Ross Sea and south of the Polar Front, variability in carbonate saturation state (Ω) is mainly driven by algal photosynthesis. Freshwater dilution and calcification have minimal influence on Ω variability. We estimate an early spring surface water ΩAr value of ~ 1.2 for the Ross Sea using a total alkalinity–salinity relationship and historical pCO2 measurements. Our results suggest that the Ross Sea is not likely to become undersaturated with respect to aragonite until the year 2070.


2016 ◽  
Author(s):  
Jocelyn C. Turnbull ◽  
Sara E. Mikaloff Fletcher ◽  
India Ansell ◽  
Gordon Brailsford ◽  
Rowena Moss ◽  
...  

Abstract. We present 60 years of Δ14CO2 measurements from Wellington, New Zealand (41° S, 175° E). The record has been extended and fully revised. New measurements have been used to evaluate the existing record and to replace original measurements where warranted. This is the earliest atmospheric Δ14CO2 record and records the rise of the 14C "bomb spike", the subsequent decline in Δ14CO2 as bomb 14C moved throughout the carbon cycle and increasing fossil fuel CO2 emissions further decreased atmospheric Δ14CO2. The initially large seasonal cycle in the 1960s reduces in amplitude and eventually reverses in phase, resulting in a small seasonal cycle of about 2 ‰ in the 2000s. The seasonal cycle at Wellington is dominated by the seasonality of cross-tropopause transport, and differs slightly from that at Cape Grim, Australia, which is influenced by anthropogenic sources in winter. Δ14CO2 at Cape Grim and Wellington show very similar trends, with significant differences only during periods of known measurement uncertainty. In contrast, Northern Hemisphere clean air sites show a higher and earlier bomb 14C peak, consistent with a 1.4-year interhemispheric exchange time. From the 1970s until the early 2000s, the Northern and Southern Hemisphere Δ14CO2 were quite similar, apparently due to the balance of 14C-free fossil fuel CO2 emissions in the north and 14C-depleted ocean upwelling in the south. The Southern Hemisphere sites show a consistent and marked elevation above the Northern Hemisphere sites since the early 2000s, which is most likely due to reduced upwelling of 14C-depleted and carbon-rich deep waters in the Southern Ocean. This developing Δ14CO2 interhemispheric gradient is consistent with recent studies that indicate a reinvigorated Southern Ocean carbon sink since the mid-2000s, and suggests that upwelling of deep waters plays an important role in this change.


Polar Record ◽  
2005 ◽  
Vol 41 (4) ◽  
pp. 281-304 ◽  
Author(s):  
William Barr ◽  
James P.C. Watt

On Christmas Eve 1923, the whaling factory ship Sir James Clark Ross, commanded by Captain Carl Anton Larsen and accompanied by five catchers, reached the front of the Ross Ice Shelf; these were the first whaling vessels to operate in the Ross Sea. They had been dispatched by the Norwegian whaling company Hvalfangeraktienselskapet Rosshavet, which had obtained a licence from the British government. For most of the 1923–24 season, Sir James Clark Ross occupied an uneasy anchorage in the deep waters of Discovery Inlet, a narrow embayment in the front of the Ross Ice Shelf, while her catchers pursued whales widely in the Ross Sea. During that first season they killed and processed 221 whales (211 blue whales and 10 fin whales), which yielded 17,300 barrels of oil. During the next decade, with the exception of the 1931–32 season, Sir James Clark Ross and two other factory ships operated by Rosshavet, C.A. Larsen and Sir James Clark Ross II, operated in the Ross Sea. From the 1926–27 season onwards these ships were joined by up to three other factory ships and their catchers, operated by other companies. During the decade 1923–33 the Rosshavet ships killed and processed 9122 whales in the Ross Sea sector, mainly in the open waters of the Ross Sea south of the pack-ice belt. Total harvest for all factory ships from the Ross Sea sector for the period was 18,238 whales (mainly blue whales) producing 1,490,948 barrels of oil. From 1924 onwards the Rosshavet catchers wintered in Paterson Inlet on Stewart Island, New Zealand, and from 1925 onwards a well-equipped shipyard, Kaipipi Shipyard, operated on Price Peninsula in Paterson Inlet to service the Rosshavet ships.


Science ◽  
2003 ◽  
Vol 302 (5645) ◽  
pp. 565c-566 ◽  
Author(s):  
D. N. Thomas

2003 ◽  
Vol 48 (3) ◽  
pp. 1079-1087 ◽  
Author(s):  
Jay T. Cullen ◽  
Zanna Chase ◽  
Kenneth H. Coale ◽  
Steve E. Fitzwater ◽  
Robert M. Sherrell

Sign in / Sign up

Export Citation Format

Share Document