scholarly journals Carbonate saturation state of surface waters in the Ross Sea and Southern Ocean: controls and implications for the onset of aragonite undersaturation

2015 ◽  
Vol 12 (11) ◽  
pp. 8429-8465 ◽  
Author(s):  
H. B. DeJong ◽  
R. B. Dunbar ◽  
D. A. Mucciarone ◽  
D. A. Koweek

Abstract. Predicting when surface waters of the Ross Sea and Southern Ocean will become undersaturated with respect to biogenic carbonate minerals is challenging in part due to the lack of baseline high resolution carbon system data. Here we present ~ 1700 surface total alkalinity measurements from the Ross Sea and along a transect between the Ross Sea and southern Chile from the austral autumn (February–March 2013). We calculate the saturation state of aragonite (ΩAr) and calcite (ΩCa) using measured total alkalinity and pCO2. In the Ross Sea and south of the Polar Front, variability in carbonate saturation state (Ω) is mainly driven by algal photosynthesis. Freshwater dilution and calcification have minimal influence on Ω variability. We estimate an early spring surface water ΩAr value of ~ 1.2 for the Ross Sea using a total alkalinity–salinity relationship and historical pCO2 measurements. Our results suggest that the Ross Sea is not likely to become undersaturated with respect to aragonite until the year 2070.

2015 ◽  
Vol 12 (23) ◽  
pp. 6881-6896 ◽  
Author(s):  
H. B. DeJong ◽  
R. B. Dunbar ◽  
D. Mucciarone ◽  
D. A. Koweek

Abstract. Predicting when surface waters of the Ross Sea and Southern Ocean will become undersaturated with respect to biogenic carbonate minerals is challenging in part due to the lack of baseline high-resolution carbon system data. Here we present ~ 1700 surface total alkalinity measurements from the Ross Sea and along a transect between the Ross Sea and southern Chile from the austral autumn (February–March 2013). We calculate the saturation state of aragonite (ΩAr) and calcite (Ω Ca) using measured total alkalinity and pCO2. In the Ross Sea and south of the Polar Front, variability in carbonate saturation state (Ω) is mainly driven by algal photosynthesis. Freshwater dilution and calcification have minimal influence on Ω variability. We estimate an early spring surface water ΩAr value of ~ 1.2 for the Ross Sea using a total alkalinity–salinity relationship and historical pCO2 measurements. Our results suggest that the Ross Sea is not likely to become undersaturated with respect to aragonite until the year 2070.


2016 ◽  
Vol 13 (21) ◽  
pp. 6049-6066 ◽  
Author(s):  
Ivia Closset ◽  
Damien Cardinal ◽  
Mathieu Rembauville ◽  
François Thil ◽  
Stéphane Blain

Abstract. A massive diatom bloom forms annually in the surface waters of the naturally iron-fertilized Kerguelen Plateau (Southern Ocean). In this study, silicon isotopic signatures (δ30Si) of silicic acid (DSi) and suspended biogenic silica (BSi) were investigated through the whole water column with unprecedented spatial resolution, during the KEOPS-2 experiment (spring 2011). We used δ30Si measurements to track the sources of silicon that fuelled the bloom, and investigated the seasonal evolution of the Si biogeochemical cycle in the iron-fertilized area. We compared the results from stations with various degrees of iron enrichment and bloom conditions to an HNLC reference station. Dissolved and particulate δ30Si signatures were highly variable in the upper 500 m, reflecting the effect of intense silicon utilization in spring, while they were quite homogeneous in deeper waters. The Si isotopic and mass balance identified a unique Winter Water (WW) Si source for the iron-fertilized area that originated from southeast of the Kerguelen Plateau and spread northward. When the WW reached a retroflection of the Polar Front (PF), the δ30Si composition of the silicic acid pool became progressively heavier. This would result from sequential diapycnal and isopycnal mixings between the initial WW and ML water masses, highlighting the strong circulation of surface waters that defined this zone. When comparing the results from the two KEOPS expeditions, the relationship between DSi depletion, BSi production, and their isotopic composition appears decoupled in the iron-fertilized area. This seasonal decoupling could help to explain the low apparent fractionation factor observed in the ML at the end of summer. Taking into account these considerations, we refined the seasonal net BSi production in the ML of the iron-fertilized area to 3.0 ± 0.3 mol Si m−2 yr−1, which was exclusively sustained by surface water phytoplankton populations. These insights confirm that the isotopic composition of dissolved and particulate silicon is a promising tool to improve our understanding of the Si biogeochemical cycle since the isotopic and mass balance allows resolution of processes in the Si cycle (i.e. uptake, dissolution, mixing).


2000 ◽  
Vol 12 (4) ◽  
pp. 414-417 ◽  
Author(s):  
Harvey Marchant ◽  
Andrew Davidson ◽  
Simon Wright ◽  
John Glazebrook

The concentrations of viruses, bacteria, chroococcoid cyanobacteria and chlorophyll a were determined in surface waters of the Southern Ocean during spring. Viral concentrations declined southward from around 4 × 106 ml−1 near Tasmania to a minimum of around 1 × 106 ml−1 at the Polar Front. South of the Front, virus concentrations increased again, reaching around 4 × 106 ml−1 in the sea-ice zone south of 60°S. Bacterial concentration decreased southwards across the Southern Ocean from around 6.5 × 105 ml−1 near Tasmania to < 1.0 × 105 ml−1 in the sea-ice zone. Cyanobacteria accounted for < 8% of the prokaryotes. There was no significant relationship between viral abundance and eithercyanobacterial or chl a concentration. Viral and bacterial concentrations were not significantly correlated north (P {0.10 < r < 0.20}) or south (P {0.20 < r < 0.5}) of the Polar Front. The virus to bacteria ratio (VBR) was between 3 and 15 in the open ocean but varied between 15 and 40 in the sea-ice region. These virus concentrations and VBRs indicate that viruses are no less important in Southern Ocean ecosystems than elsewhere in the world's oceans.


Author(s):  
Qingshan Luan ◽  
Jianqiang Sun ◽  
Jun Wang

Coccolithophores and Parmales are important functional groups of calcified and siliceous marine nanophytoplankton. Large-scale biogeographic distributions of the two groups were investigated based on 71 samples that were collected in the Atlantic Ocean. Using a scanning electron microscope, a total of 48 taxa of coccolithophores and eight taxa of Parmales were recorded, with Emiliania huxleyi, Tetraparma pelagica and Triparma strigata as the predominant forms. The highest abundances of coccolithophores (376 × 103 cells l−1) and Parmales (624 × 103 cells l−1) were observed in waters north-east of the Falkland Islands and the South Georgia Island, in close association with the Subantarctic Front and Polar Front, respectively. Three major biogeographic assemblages, i.e. the Falkland Shelf Assemblage, the Southern Ocean Assemblage and the Atlantic Ocean Assemblage, were revealed in cluster analysis. Additionally, canonical correspondence analysis indicated that temperature significantly affects the latitudinal patterns of the two algal groups. High abundances of Parmales were closely coupled with those of E. huxleyi in waters of the Southern Ocean with low temperature (<10°C). However, the number of coccolithophore species, along with the Shannon–Weaver diversity, significantly increased with elevated temperature, suggesting more diverse assemblages in tropical waters.


2014 ◽  
Vol 11 (9) ◽  
pp. 13389-13432 ◽  
Author(s):  
P. van der Merwe ◽  
A. R. Bowie ◽  
F. Quéroué ◽  
L. Armand ◽  
S. Blain ◽  
...  

Abstract. The KEOPS2 project aims to elucidate the role of natural Fe fertilisation on biogeochemical cycles and ecosystem functioning, including quantifying the sources and processes by which iron is delivered in the vicinity of the Kerguelen Archipelago, Southern Ocean. The KEOPS2 process study used an upstream HNLC, deep water (2500 m), reference station to compare with a shallow (500 m), strongly fertilised plateau station and continued the observations to a downstream, bathymetrically trapped recirculation of the Polar Front where eddies commonly form and persist for hundreds of kilometres into the Southern Ocean. Over the Kerguelen Plateau, mean particulate (1–53 μm) Fe and Al concentrations (pFe = 13.4 nM, pAl = 25.2 nM) were more than 20-fold higher than at an offshore (lower-productivity) reference station (pFe = 0.53 nM, pAl = 0.83 nM). In comparison, over the plateau dissolved Fe levels were only elevated by a factor of ∼2. Over the Kerguelen Plateau, ratios of pMn/pAl and pFe/pAl resemble basalt, likely originating from glacial/fluvial inputs into shallow coastal waters. In downstream, offshore deep-waters, higher pFe/pAl, and pMn/pAl ratios were observed, suggesting loss of lithogenic material accompanied by retention of pFe and pMn. Biological uptake of dissolved Fe and Mn and conversion into the biogenic particulate fraction or aggregation of particulate metals onto bioaggregates also increased these ratios further in surface waters as the bloom developed within the recirculation structure. While resuspension of shelf sediments is likely to be one of the important mechanisms of Fe fertilisation over the plateau, fluvial and glacial sources appear to be important to areas downstream of the island. Vertical profiles within an offshore recirculation feature associated with the Polar Front show pFe and pMn levels that were 6-fold and 3.5-fold lower respectively than over the plateau in surface waters, though still 3.6-fold and 1.7-fold higher respectively than the reference station. Within the recirculation feature, strong depletions of pFe and pMn were observed in the remnant winter water (temperature-minimum) layer near 175 m, with higher values above and below this depth. The correspondence between the pFe minima and the winter water temperature minima implies a seasonal cycle is involved in the supply of pFe into the fertilized region. This observed association is indicative of reduced supply in winter, which is counterintuitive if sediment resuspension and entrainment within the mixed layer is the primary fertilising mechanism to the downstream recirculation structure. Therefore, we hypothesise that lateral transport of pFe from shallow coastal waters is strong in spring, associated with snow melt and increased runoff due to rainfall, drawdown through summer and reduced supply in winter when snowfall and freezing conditions predominate in the Kerguelen region.


2019 ◽  
Author(s):  
Coraline Leseurre ◽  
Claire Lo Monaco ◽  
Gilles Reverdin ◽  
Nicolas Metzl ◽  
Jonathan Fin ◽  
...  

Abstract. The North Atlantic is one of the major sinks for anthropogenic CO2. In this study, we investigate the evolution of CO2 uptake and ocean acidification in the North Atlantic Subpolar Gyre (50° N–64° N) using repeated observations collected over the last three decades in the framework of the long-term monitoring program SURATLANT (SURveillance de l'ATLANTique). Data obtained between 1993 and 1997 suggest an important reduction in the capacity of the ocean to absorb CO2 from the atmosphere during summer, due to a rapid increase in the fugacity of CO2 (fCO2) in surface waters (5 times faster than the increase in the atmosphere). This was associated with a rapid decrease in surface pH (of the order of −0.014/yr) and was mainly driven by a significant warming and increase in DIC. Similar trends are observed between 2001 and 2007 during both summer and winter with a mean decrease of pH between −0.006/yr and −0.013/yr. These rapid trends are mainly explained by a significant warming of surface waters, a decrease in alkalinity during summer and an increase in DIC during winter. On the contrary, data obtained during the last decade (2008–2017) show a stagnation of surface fCO2 (increasing the ocean sink for CO2) and pH. These recent trends are explained by the cooling of surface waters, a small decrease of total alkalinity and the near-stagnation of dissolved inorganic carbon. Overall our results show that the uptake of CO2 and ocean acidification in the North Atlantic Subpolar Gyre is substantially impacted by multi-decadal variability, in addition to the accumulation of anthropogenic CO2. As a consequence, the future evolution of air-sea CO2 fluxes, pH and the saturation state of surface waters with regards to aragonite and calcite remain highly uncertain in this region.


2015 ◽  
Vol 12 (3) ◽  
pp. 739-755 ◽  
Author(s):  
P. van der Merwe ◽  
A. R. Bowie ◽  
F. Quéroué ◽  
L. Armand ◽  
S. Blain ◽  
...  

Abstract. The KEOPS2 project aims to elucidate the role of natural Fe fertilisation on biogeochemical cycles and ecosystem functioning, including quantifying the sources and processes by which iron is delivered in the vicinity of the Kerguelen Archipelago, Southern Ocean. The KEOPS2 process study used an upstream high-nutrient, low-chlorophyll (HNLC), deep water (2500 m), reference station to compare with a shallow (500 m), strongly fertilised plateau station and continued the observations to a downstream, bathymetrically trapped recirculation of the Polar Front where eddies commonly form and persist for hundreds of kilometres into the Southern Ocean. Over the Kerguelen Plateau, mean particulate (1–53 μm) Fe and Al concentrations (pFe = 13.4 nM, pAl = 25.2 nM) were more than 20-fold higher than at an offshore (lower-productivity) reference station (pFe = 0.53 nM, pAl = 0.83 nM). In comparison, over the plateau dissolved Fe levels were only elevated by a factor of ~ 2. Over the Kerguelen Plateau, ratios of pMn / pAl and pFe / pAl resemble basalt, likely originating from glacial/fluvial inputs into shallow coastal waters. In downstream, offshore deep-waters, higher pFe / pAl, and pMn / pAl ratios were observed, suggesting loss of lithogenic material accompanied by retention of pFe and pMn. Biological uptake of dissolved Fe and Mn and conversion into the biogenic particulate fraction or aggregation of particulate metals onto bioaggregates also increased these ratios further in surface waters as the bloom developed within the recirculation structure. While resuspension of shelf sediments is likely to be one of the important mechanisms of Fe fertilisation over the plateau, fluvial and glacial sources appear to be important to areas downstream of the island. Vertical profiles within an offshore recirculation feature associated with the Polar Front show pFe and pMn levels that were 6-fold and 3.5-fold lower, respectively, than over the plateau in surface waters, though still 3.6-fold and 1.7-fold higher respectively than the reference station. Within the recirculation feature, strong depletions of pFe and pMn were observed in the remnant winter water (temperature-minimum) layer near 175 m, with higher values above and below this depth. The correspondence between the pFe minima and the winter water temperature minima implies a seasonal cycle is involved in the supply of pFe into the fertilised region. This observed association is indicative of reduced supply in winter, which is counterintuitive if sediment resuspension and entrainment within the mixed layer is the primary fertilising mechanism to the downstream recirculation structure. Therefore, we hypothesise that lateral transport of pFe from shallow coastal waters is strong in spring, associated with snow melt and increased runoff due to rainfall, drawdown through summer and reduced supply in winter when snowfall and freezing conditions predominate in the Kerguelen region.


2019 ◽  
Vol 16 (19) ◽  
pp. 3679-3702 ◽  
Author(s):  
Mariem Saavedra-Pellitero ◽  
Karl-Heinz Baumann ◽  
Miguel Ángel Fuertes ◽  
Hartmut Schulz ◽  
Yann Marcon ◽  
...  

Abstract. Coccolithophores are globally distributed microscopic marine algae that exert a major influence on the global carbon cycle through calcification and primary productivity. There is recent interest in coccolithophore polar communities; however field observations regarding their biogeographic distribution are scarce for the Southern Ocean (SO). This study documents the latitudinal, as well as in depth, variability in the coccolithophore assemblage composition and the coccolith mass variation in the ecologically dominant Emiliania huxleyi across the Drake Passage. Ninety-six water samples were taken between 10 and 150 m water depth from 18 stations during POLARSTERN Expedition PS97 (February–April 2016). A minimum of 200 coccospheres per sample were identified in the scanning electron microscope, and coccolith mass was estimated with light microscopy. We find that coccolithophore abundance, diversity and maximum depth habitat decrease southwards, marking different oceanographic fronts as ecological boundaries. We characterize three zones: (1) the Chilean margin, where E. huxleyi type A (normal and overcalcified) and type R are present; (2) the Subantarctic Zone (SAZ), where E. huxleyi reaches maximum values of 212.5×103 cells L−1 and types B/C, C and O are dominant; and (3) the Polar Front Zone (PFZ), where E. huxleyi types B/C and C dominate. We link the decreasing trend in E. huxleyi coccolith mass to the poleward latitudinal succession from the type A to the type B group. Remarkably, we find that coccolith mass is strongly anticorrelated to total alkalinity, total CO2, the bicarbonate ion and pH. We speculate that low temperatures are a greater limiting factor than carbonate chemistry in the Southern Ocean. However, further in situ oceanographic data are needed to verify the proposed relationships. We hypothesize that assemblage composition and calcification modes of E. huxleyi in the Drake Passage will be strongly influenced by the ongoing climate change.


2019 ◽  
Author(s):  
Mariem Saavedra-Pellitero ◽  
Karl-Heinz Baumann ◽  
Miguel Ángel Fuertes ◽  
Hartmut Schulz ◽  
Yann Marcon ◽  
...  

Abstract. Coccolithophores are globally distributed microscopic marine algae that exert a major influence on the global carbon cycle through calcification and primary productivity. There is recent interest in coccolithophore polar communities, however field observations regarding their biogeographic distribution are scarce for the Southern Ocean. This study documents the latitudinal variability in the coccolithophore assemblage composition and the coccolith mass variation of the ecologically dominant Emiliania huxleyi across the Drake Passage. Ninety-six water samples were taken between 10 and 150 m water depth from 18 stations during POLARSTERN Expedition PS97 (February–April, 2016). A minimum of 200 coccospheres per sample were classified in scanning electron microscope and coccolith mass was estimated with light microscopy, using the C-Calcita software. We find that coccolithophore abundance and diversity decrease southwards marking different oceanographic fronts as ecological boundaries. We characterize three zones: (1) the Chilean margin, where E. huxleyi type A (normal and overcalcified) and type R are present; (2) the Subantarctic Zone (SAZ), where E. huxleyi reaches maximum values of 212.5×103cells/L and types B/C, C, O are dominant. (3) The Polar Front Zone (PFZ), where E. huxleyi types B/C and C dominate. We link the decreasing trend in E. huxleyi coccolith mass to the poleward latitudinal succesion from type A to type B group. Remarkably, we find that coccolith mass is strongly anticorrelated to total alkalinity, total CO2, bicarbonate ion and pH. We speculate that low temperatures are a greater limiting factor than carbonate chemistry in the Southern Ocean. However, further in situ oceanographical data is needed to verify the proposed relationships. We hypothesize that assemblage composition and calcification modes of E. huxleyi in the Drake Passage will be strongly influenced by the ongoing climate change.


Sign in / Sign up

Export Citation Format

Share Document