blue whales
Recently Published Documents


TOTAL DOCUMENTS

192
(FIVE YEARS 47)

H-INDEX

27
(FIVE YEARS 3)

PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0260273
Author(s):  
William S. D. Wilcock ◽  
Rose S. Hilmo

Passive acoustic monitoring is an important tool for studying marine mammals. Ocean bottom seismometer networks provide data sets of opportunity for studying blue whales (Balaenoptera musculus) which vocalize extensively at seismic frequencies. We describe methods to localize calls and obtain tracks using the B call of northeast Pacific blue whale recorded by a large network of widely spaced ocean bottom seismometers off the coast of the Pacific Northwest. The first harmonic of the B call at ~15 Hz is detected using spectrogram cross-correlation. The seasonality of calls, inferred from a dataset of calls identified by an analyst, is used to estimate the probability that detections are true positives as a function of the strength of the detection. Because the spacing of seismometers reaches 70 km, faint detections with a significant probability of being false positives must be considered in multi-station localizations. Calls are located by maximizing a likelihood function which considers each strong detection in turn as the earliest arrival time and seeks to fit the times of detections that follow within a feasible time and distance window. An alternative procedure seeks solutions based on the detections that maximize their sum after weighting by detection strength and proximity. Both approaches lead to many spurious solutions that can mix detections from different B calls and include false detections including misidentified A calls. Tracks that are reliable can be obtained iteratively by assigning detections to localizations that are grouped in space and time, and requiring groups of at least 20 locations. Smooth paths are fit to tracks by including constraints that minimize changes in speed and direction while fitting the locations to their uncertainties or applying the double difference relocation method. The reliability of localizations for future experiments might be improved by increasing sampling rates and detecting harmonics of the B call.


2021 ◽  
Author(s):  
Samuel S Urmy ◽  
Alli N Cramer ◽  
Tanya L Rogers ◽  
Jenna Sullivan-Stack ◽  
Marian Louise Schmidt ◽  
...  

From micro to planetary scales, spatial heterogeneity - patchiness - is ubiquitous in ecological systems, defining the environments in which organisms move and interact. While this fact has been recognized for decades, most large-scale ecosystem models still use spatially averaged "mean fields" to represent natural populations, while fine-scale, spatially explicit models are mostly restricted to particular organisms or systems. In a conceptual paper, Grunbaum (2012, Interface Focus 2: 150-155) introduced a heuristic framework, based on three dimensionless ratios quantifying movement, reproduction, and resource consumption, to characterize patchy ecological interactions and identify when mean-field assumptions are justifiable. In this paper, we calculated Grunbaum's dimensionless numbers for 33 real interactions between consumers and their resource patches in terrestrial, aquatic, and aerial environments. Consumers ranged in size from bacteria to blue whales, and patches lasted from minutes to millennia, spanning spatial scales of mm to hundreds of km. We found that none of the interactions could be accurately represented by a purely mean-field model, though 26 of them (79%) could be partially simplified by averaging out movement, reproductive, or consumption dynamics. Clustering consumer-resource pairs by their non-dimensional ratios revealed several unexpected dynamic similarities between disparate interactions. For example, bacterial Pseudoalteromonas exploit nutrient plumes in a similar manner to Mongolian gazelles grazing on ephemeral patches of steppe vegetation. Our findings suggest that dimensional analysis is a valuable tool for characterizing ecological patchiness, and can link the dynamics of widely different systems into a single quantitative framework.


2021 ◽  
Author(s):  
William Oestreich ◽  
Briana Abrahms ◽  
Megan McKenna ◽  
Jeremy Goldbogen ◽  
Larry Crowder ◽  
...  

1.Matching the timing of life history transitions with ecosystem phenology is critical for the survival of many species, especially those undertaking long-distance migrations. As a result, whether and how migratory populations adjust timing of life history transitions in response to environmental variability are important questions in ecology and conservation. Yet the flexibility and drivers of life history transitions remain largely untested for migratory marine populations, which contend with the unique spatiotemporal dynamics and sensory conditions found in marine ecosystems. 2.Here, using an acoustic signature of blue whales’ regional population-level transition from foraging to breeding migration, we document significant interannual flexibility in the timing of this life history transition (spanning roughly four months) over a continuous six-year study period. 3.We further show that timing of this transition follows the oceanographic phenology of blue whales’ foraging habitat, with a later transition from foraging to breeding migration occurring in years with an earlier onset, later peak, and greater accumulation of biological productivity. 4.These results indicate that blue whales use flexible cues, likely including individual sensing of foraging conditions and long-distance vocal signals from conspecifics, to match timing of this population-level life history transition with interannual oceanographic variability in their vast and dynamic foraging habitat. The use of flexible cues in timing a major life history transition may be key to the persistence of this endangered population facing the pressures of rapid environmental change. 5.Further, these findings extend theoretical understanding of the flexibility and drivers of population-level migration beyond insights derived primarily from group-living and terrestrial migrants, illuminating the drivers and flexibility of a life history transition in a relatively solitary marine migrant.


2021 ◽  
Author(s):  
Kimberly T. Goetz ◽  
Simon J. Childerhouse ◽  
David Paton ◽  
Mike Ogle ◽  
Krista Linde ◽  
...  

2021 ◽  
Vol 8 ◽  
Author(s):  
Gary Truong ◽  
Tracey L. Rogers

There are multiple blue whale acoustic populations found across the Southern Hemisphere. The different subspecies of blue whales feed in separate areas, but during their migration to lower-latitude breeding areas each year, Antarctic blue whales become sympatric with pygmy and Chilean blue whales. Few studies have compared the degree of this overlap of the Southern Hemisphere blue whale subspecies across ocean basins during their migration. Using up to 16 years of acoustic data, this study compares the broad seasonal presence of Antarctic blue whales, Chilean blue whales, and Southeast Indian Ocean (SEIO) pygmy blue whales across the Pacific and Indian Oceans. Antarctic blue whales were sympatric with the other two blue whale subspecies during the migrating season of every year. Despite this overlap, Chilean and pygmy blue whale detections peaked earlier during the austral autumn (April–May) while Antarctic blue whale detections peaked later during the austral winter (June). Chilean (Pacific Ocean) and SEIO (Indian Ocean) pygmy blue whales showed similar seasonal patterns in detections despite occurring in different ocean basins. Though we have shown that Antarctic blue whales have the potential to encounter other blue whale subspecies during the breeding season, these distinct groups have remained acoustically stable through time. Further understanding of where these whales migrate will enable a better insight as to how these subspecies continue to remain separate.


2021 ◽  
Author(s):  
Vanessa Pirotta ◽  
Robert Harcourt

ABSTRACT Two subspecies of blue whale occur in Australian waters, (1) the pygmy blue whale (Balaenoptera musculus brevicauda) and (2) the Antarctic blue whale (Balaenoptera musculus intermedia). Understanding blue whale presence in Australian waters is critical to ensuring Australia’s protection of these marine mammals as both subspecies were heavily exploited during historical whaling. This short note documents pygmy blue whale sightings in New South Wales waters over the last 18 years. Observations were opportunistically made via citizen science and verified by scientists. Sightings in this note contribute to our limited knowledge of pygmy blue whale distribution along the east coast of Australia and may help understand the migratory movements of New Zealand pygmy blue whales off Australia and in the Tasman Sea. Overall, information presented in this note contributes to Australia’s national and international conservation efforts to protecting blue whales as a migratory and threatened species.


Author(s):  
Valentina Melica ◽  
Shannon Atkinson ◽  
Diane Gendron ◽  
John Calambokidis ◽  
Franz Mueter analysis

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Emmanuelle C. Leroy ◽  
Jean-Yves Royer ◽  
Abigail Alling ◽  
Ben Maslen ◽  
Tracey L. Rogers

AbstractBlue whales were brought to the edge of extinction by commercial whaling in the twentieth century and their recovery rate in the Southern Hemisphere has been slow; they remain endangered. Blue whales, although the largest animals on Earth, are difficult to study in the Southern Hemisphere, thus their population structure, distribution and migration remain poorly known. Fortunately, blue whales produce powerful and stereotyped songs, which prove an effective clue for monitoring their different ‘acoustic populations.’ The DGD-Chagos song has been previously reported in the central Indian Ocean. A comparison of this song with the pygmy blue and Omura’s whale songs shows that the Chagos song are likely produced by a distinct previously unknown pygmy blue whale population. These songs are a large part of the underwater soundscape in the tropical Indian Ocean and have been so for nearly two decades. Seasonal differences in song detections among our six recording sites suggest that the Chagos whales migrate from the eastern to western central Indian Ocean, around the Chagos Archipelago, then further east, up to the north of Western Australia, and possibly further north, as far as Sri Lanka. The Indian Ocean holds a greater diversity of blue whale populations than thought previously.


Sign in / Sign up

Export Citation Format

Share Document