Upper-Layer Circulation in the Approaches to Yucatan Channel

Author(s):  
A. Badan ◽  
J. Candela ◽  
J. Sheinbaum ◽  
J. Ochoa
2019 ◽  
Vol 49 (6) ◽  
pp. 1381-1401 ◽  
Author(s):  
J. Candela ◽  
J. Ochoa ◽  
J. Sheinbaum ◽  
M. López ◽  
P. Pérez-Brunius ◽  
...  

AbstractFour years (September 2012 to August 2016) of simultaneous current observations across the Yucatan Channel (~21.5°N) and the Straits of Florida (~81°W) have permitted us to investigate the characteristics of the flow through the Gulf of Mexico. The average transport in both channels is 27.6 Sv (1 Sv = 106 m3 s−1), in accordance with previous estimates. At the Straits of Florida section, the transport related to the astronomical tide explains 55% of the observed variance with a mixed semidiurnal/diurnal character, while in the Yucatan Channel tides contribute 82% of the total variance and present a dominant diurnal character. At periods longer than a week the transports in the Yucatan and Florida sections have a correlation of 0.83 without any appreciable lag. The yearly running means of the transport time series in both channels are well correlated (0.98) and present a 3-Sv range variation in the 4 years analyzed. This long-term variability is well related to the convergence of the Sverdrup transport in the North Atlantic between 14.25° and 18.75°N. Using 2 years (July 2014–July 2016) of simultaneous currents observations in the Florida section, the Florida Cable section (~26.7°N), and a section across the Old Bahama Channel (~78.4°W), a mean northward transport of 28.4, 31.1, and 1.6 Sv, respectively, is obtained, implying that only 1.1 Sv is contributed by the Northwest Providence Channel to the mean transport observed at the Cable section during this 2-yr period.


2001 ◽  
Vol 59 (5) ◽  
pp. 725-747 ◽  
Author(s):  
J. Ochoa ◽  
J. Sheinbaum ◽  
A. Badan ◽  
J. Candela ◽  
D. Wilson

2010 ◽  
Vol 40 (7) ◽  
pp. 1575-1581 ◽  
Author(s):  
Clément Rousset ◽  
Lisa M. Beal

Abstract The Yucatan and Florida Currents represent the majority of the warm-water return path of the global thermohaline circulation through the tropical/subtropical North Atlantic Ocean. Their transports are quantified and compared by analyzing velocity data collected aboard the cruise ship Explorer of the Seas. From 157 crossings between May 2001 and May 2006, the mean transport of the Florida Current at 26°N was estimated to be 30.8 ± 3.2 Sv (1 Sv ≡ 106 m3 s−1), with seasonal amplitude of 2.9 Sv. Upstream, the Yucatan Current was estimated from 90 crossings to be 30.3 ± 5 Sv, with seasonal amplitude of 2.7 Sv. These two currents are shown to be linked at seasonal time scales. Hence, contrary to former results, it was found that transports through the Florida Straits and the Yucatan Channel are similar, with the implication that only small inflows occur through minor channels between them.


Author(s):  
Paula Pérez-Brunius ◽  
Paula García-Carrillo ◽  
Jean Dubranna ◽  
Julio Sheinbaum ◽  
Julio Candela

2002 ◽  
Vol 107 (C12) ◽  
pp. 26-1-26-7 ◽  
Author(s):  
L. Bunge ◽  
J. Ochoa ◽  
A. Badan ◽  
J. Candela ◽  
J. Sheinbaum
Keyword(s):  

2005 ◽  
Vol 35 (3) ◽  
pp. 308-322 ◽  
Author(s):  
Peter Hamilton ◽  
Jimmy C. Larsen ◽  
Kevin D. Leaman ◽  
Thomas N. Lee ◽  
Evans Waddell

Abstract Transports were calculated for four sections of the Florida Current from Key West to Jupiter, Florida, using a moored current-meter array and voltages from cross-channel telephone cables at the western and northern ends of the Straits of Florida. In addition, moored arrays were used to estimate transport through the Northwest Providence, Santaren, and Old Bahama Channels that connect the Florida Current to the southwestern part of the North Atlantic Ocean. Transport measurements were obtained for an 11-month period from December 1990 to November 1991. Mean transports of ∼25 Sv (1 Sv ≡ 106 m3 s−1) for the flow across the western ends of the straits, which agree quite well with recent estimates of 23.8 ± 1 Sv entering the Gulf of Mexico through the Yucatan Channel, were obtained from both the Key West to Havana cable and the moored array. This estimate is about 5 Sv less than the generally accepted transport through the northern end of the straits at 27°N. This difference was partially accounted for by inflows through the side channels with more transport from the Old Bahama than the Northwest Providence Channel. The variability in the southern part of the straits was larger than at 27°N and included large diversions of the Florida Current south of the Cay Sal Bank and into the Santaren Channel that were caused by large meanders of the flow. The variability of transport in the side channels contributed to the variability of the Florida Current and reduces the correlations of the transports at the ends of the straits. Therefore, the well-measured transport at 27°N is not an accurate indicator of the transport of the Loop Current out of the Gulf of Mexico.


2005 ◽  
Vol 35 (10) ◽  
pp. 1801-1812 ◽  
Author(s):  
Christopher J. DeHaan ◽  
Wilton Sturges

Abstract The anticyclonic Loop Current dominates the upper-layer flow in the eastern Gulf of Mexico, with a weaker mean anticyclonic pattern in the western gulf. There are reasons, however, to suspect that the deep mean flow should actually be cyclonic. Topographic wave rectification and vortex stretching contribute to this cyclonic tendency, as will the supply of cold incoming deep water at the edges of the basin. The authors find that the deep mean flow is cyclonic both in the eastern and western gulf, with speeds on the order of 1–2 cm s−1 at 2000 m. Historical current-meter mooring data, as well as profiling autonomous Lagrangian circulation explorer (PALACE) floats (at 900 m), suggest that vertical geostrophic shear relative to 1000 m gives a surprisingly accurate result in the interior of the basin. The temperature around the edges of the basin at 2000 m is coldest near the Yucatan Channel, where Caribbean Sea water is colder by ∼0.1°C. The temperature increases steadily with distance in the counterclockwise direction from the Yucatan, consistent with a deep mean cyclonic boundary flow.


Sign in / Sign up

Export Citation Format

Share Document