sverdrup transport
Recently Published Documents


TOTAL DOCUMENTS

14
(FIVE YEARS 2)

H-INDEX

5
(FIVE YEARS 1)

2019 ◽  
Vol 49 (6) ◽  
pp. 1381-1401 ◽  
Author(s):  
J. Candela ◽  
J. Ochoa ◽  
J. Sheinbaum ◽  
M. López ◽  
P. Pérez-Brunius ◽  
...  

AbstractFour years (September 2012 to August 2016) of simultaneous current observations across the Yucatan Channel (~21.5°N) and the Straits of Florida (~81°W) have permitted us to investigate the characteristics of the flow through the Gulf of Mexico. The average transport in both channels is 27.6 Sv (1 Sv = 106 m3 s−1), in accordance with previous estimates. At the Straits of Florida section, the transport related to the astronomical tide explains 55% of the observed variance with a mixed semidiurnal/diurnal character, while in the Yucatan Channel tides contribute 82% of the total variance and present a dominant diurnal character. At periods longer than a week the transports in the Yucatan and Florida sections have a correlation of 0.83 without any appreciable lag. The yearly running means of the transport time series in both channels are well correlated (0.98) and present a 3-Sv range variation in the 4 years analyzed. This long-term variability is well related to the convergence of the Sverdrup transport in the North Atlantic between 14.25° and 18.75°N. Using 2 years (July 2014–July 2016) of simultaneous currents observations in the Florida section, the Florida Cable section (~26.7°N), and a section across the Old Bahama Channel (~78.4°W), a mean northward transport of 28.4, 31.1, and 1.6 Sv, respectively, is obtained, implying that only 1.1 Sv is contributed by the Northwest Providence Channel to the mean transport observed at the Cable section during this 2-yr period.


2017 ◽  
Vol 47 (3) ◽  
pp. 603-614 ◽  
Author(s):  
Zhitao Yu ◽  
E. Joseph Metzger ◽  
Yalin Fan

AbstractA more complete wind stress τn formulation takes into account the ocean surface currents Vo, while the conventional wind stress τc popularly used in ocean circulation models is only a function of 10-m winds V10. An analytical solution is derived for the difference of Sverdrup transport induced by using τn instead of τc. A scaling analysis of the analytical solution indicates a 6% reduction of the Sverdrup transport in the North Pacific (i.e., the Kuroshio transport in the East China Sea) when Ekman velocity dominates the ocean surface currents. Because of the quadratic nature of wind stress, four nonlinear terms contribute equally to this difference: two vorticity torque terms and two speed gradient torque terms. A pair of 12.5-yr (July 2002–14) Hybrid Coordinate Ocean Model simulations that only differ in the wind stress formulation are used to test the analytical solution. The model results (2004–14) confirm that using τn instead of τc reduces the Sverdrup transport in the North Pacific by 8%–17% between 23° and 32°N. The reduction rate of the simulated 11-yr mean Kuroshio transport through the East Taiwan Channel and Tokara Strait is 8.0% (−2.5 Sv; 1 Sv ≡ 106 m3 s−1) and 12.8% (−4.8 Sv), respectively, in good agreement with the Sverdrup transport reduction rate, which is 7.4% (−2.6 Sv) and 15.4% (−6.3 Sv) at the corresponding latitude. The local effect of changing wind stress/wind work and Ekman transport due to the inclusion of Vo in the wind stress formulation is negligible compared to the Kuroshio volume transport change estimated in this study.


2016 ◽  
Author(s):  
Peter C. Chu

Abstract. The cornerstone theories of ocean dynamics proposed by Sverdrup (1947), Stommel (1948), and Munk (1950) are based on the assumption of level of no motion. Such an assumption is the same as the assumption of no meridional geostrophic transport. Ever since Sverdrup (1947) however, verification of the accuracy of the Sverdrup balance theory is based on the comparison of the Sverdrup meridional transport with the meridional transport calculated directly from the geostrophic currents based on hydrographic data. To overcome the mismatch between theory (no meridional geostrophic transport in Sverdrup transport) and verification (comparison of Sverdrup transport to meridional geostrophic transport), extended Sverdrup-Stommel-Munk transport equations are derived in this note with replacing the level of no motion by the ocean bathymetry and in consequence one forcing function (surface wind stress) in the classical transport equations (with level of no motion assumption) is replaced by five forcing functions: density, surface wind stress, bottom meridional current, bottom stresses due to vertical and horizontal viscosities. The first two forcing functions (density and surface wind stress) are more than an order of magnitude stronger than the other three forcing functions using the world ocean bathymetry, climatological annual mean hydrographic and surface wind stress data. The extended Sverdrup volume transport streamfunctions under wind forcing, density forcing, and combined wind and density forcing are presented.


2014 ◽  
Vol 27 (17) ◽  
pp. 6439-6455 ◽  
Author(s):  
A. Duchez ◽  
J. J.-M. Hirschi ◽  
S. A. Cunningham ◽  
A. T. Blaker ◽  
H. L. Bryden ◽  
...  

Abstract The Atlantic meridional overturning circulation (AMOC) has received considerable attention, motivated by its major role in the global climate system. Observations of AMOC strength at 26°N made by the Rapid Climate Change (RAPID) array provide the best current estimate of the state of the AMOC. The period 2004–11 when RAPID AMOC is available is too short to assess decadal variability of the AMOC. This modeling study introduces a new AMOC index (called AMOCSV) at 26°N that combines the Florida Straits transport, the Ekman transport, and the southward geostrophic Sverdrup transport. The main hypothesis in this study is that the upper midocean geostrophic transport calculated using the RAPID array is also wind-driven and can be approximated by the geostrophic Sverdrup transport at interannual and longer time scales. This index is expected to reflect variations in the AMOC at interannual to decadal time scales. This estimate of the surface branch of the AMOC can be constructed as long as reliable measurements are available for the Gulf Stream and for wind stress. To test the reliability of the AMOCSV on interannual and longer time scales, two different numerical simulations are used: a forced and a coupled simulation. Using these simulations the AMOCSV captures a substantial fraction of the AMOC variability and is in good agreement with the AMOC transport at 26°N on both interannual and decadal time scales. These results indicate that it might be possible to extend the observation-based AMOC at 26°N back to the 1980s.


Ocean Science ◽  
2010 ◽  
Vol 6 (4) ◽  
pp. 837-859 ◽  
Author(s):  
C. P. Atkinson ◽  
H. L. Bryden ◽  
J. J-M. Hirschi ◽  
T. Kanzow

Abstract. Since April 2004 the RAPID array has made continuous measurements of the Atlantic Meridional Overturning Circulation (AMOC) at 26° N. Two key components of this system are Ekman transport zonally integrated across 26° N and western boundary current transport in the Florida Straits. Whilst measurements of the AMOC as a whole are somewhat in their infancy, this study investigates what useful information can be extracted on the variability of the Ekman and Florida Straits transports using the decadal timeseries already available. Analysis is also presented for Sverdrup transports zonally integrated across 26° N. The seasonal cycles of Florida Straits, Ekman and Sverdrup transports are quantified at 26° N using harmonic analysis of annual and semi-annual constituents. Whilst Sverdrup transport shows clear semi-annual periodicity, calculations of seasonal Florida Straits and Ekman transports show substantial interannual variability due to contamination by variability at non-seasonal frequencies; the mean seasonal cycle for these transports only emerges from decadal length observations. The Florida Straits and Ekman mean seasonal cycles project on the AMOC with a combined peak-to-peak seasonal range of 3.5 Sv. The combined seasonal range for heat transport is 0.40 PW. The Florida Straits seasonal cycle possesses a smooth annual periodicity in contrast with previous studies suggesting a more asymmetric structure. No clear evidence is found to support significant changes in the Florida Straits seasonal cycle at sub-decadal periods. Whilst evidence of wind driven Florida Straits transport variability is seen at sub-seasonal and annual periods, a model run from the 1/4° eddy-permitting ocean model NEMO is used to identify an important contribution from internal oceanic variability at sub-annual and interannual periods. The Ekman transport seasonal cycle possesses less symmetric structure, due in part to different seasonal transport regimes east and west of 50 to 60° W. Around 60% of non-seasonal Ekman transport variability occurs in phase section-wide at 26° N and is related to the NAO, whilst Sverdrup transport variability is more difficult to decompose.


2010 ◽  
Vol 7 (2) ◽  
pp. 919-971
Author(s):  
C. P. Atkinson ◽  
H. L. Bryden ◽  
J. J.-M. Hirschi ◽  
T. Kanzow

Abstract. Since April 2004 the RAPID array has made continuous measurements of the Atlantic Meridional Overturning Circulation (AMOC) at 26° N. Two key components of this system are Ekman transport zonally integrated across 26° N and western boundary current transport in the Florida Straits. Whilst measurements of the AMOC as a whole are somewhat in their infancy, this study investigates what useful information can be extracted on the variability of the Ekman and Florida Straits transports using the decadal timeseries already available. Analysis is also presented for Sverdrup transports zonally integrated across 26° N. The seasonal cycles of Florida Straits, Ekman and Sverdrup transports are quantified at 26° N using harmonic analysis of annual and semi-annual constituents. Whilst Sverdrup transport shows clear semi-annual periodicity, calculations of seasonal Florida Straits and Ekman transports show substantial interannual variability due to variability at non-seasonal frequencies; the mean seasonal cycle for these transports only emerges from decadal length observations. The Florida Straits and Ekman mean seasonal cycles project on the AMOC with a combined peak-to-peak seasonal range of 3.5 Sv. The combined seasonal range for heat transport is 0.40 PW. The Florida Straits seasonal cycle possesses a smooth annual periodicity in contrast with previous studies suggesting a more asymmetric structure. No clear evidence is found to support significant changes in the Florida Straits seasonal cycle at sub-decadal periods. Whilst evidence of wind driven Florida Straits transport variability is seen at sub-seasonal and annual periods, model runs from the 1/4° eddy-permitting ocean model NEMO are used to identify an important contribution from internal oceanic variability at sub-annual and interannual periods. The Ekman transport seasonal cycle possesses less symmetric structure, due in part to different seasonal transport regimes east and west of 50 to 60° W. Around 60% of non-seasonal Ekman transport variability occurs in phase section-wide at 26° N and is related to the NAO, whilst Sverdrup transport variability is more difficult to decompose.


2004 ◽  
Vol 34 (11) ◽  
pp. 2525-2540 ◽  
Author(s):  
Terrence M. Joyce ◽  
Claude Frankignoul ◽  
Jiayan Yang ◽  
Helen E. Phillips

Abstract The equatorial SST dipole represents a mode of climate variability in the tropical Atlantic Ocean that is closely tied to cross-equatorial flow in the atmosphere, from the cold to the warm hemisphere. It has been suggested that this mode is sustained by a positive feedback of the tropical winds on the cross-equatorial SST gradient. The role, if any, of the tropical ocean is the focus of this investigation, which shows that at the latitudes of the SST signal (centered on 10°N/S) there is a weak positive feedback suggested in data from the last half century, that the cross-equatorial wind stress is closely coupled to this SST gradient on monthly time scales with no discernable lag, and that the period from January to June is the most active period for coupling. Northward (southward) anomalies of cross-equatorial wind stress are associated with a substantial negative (positive) wind stress curl. This wind system can thus drive a cross-equatorial Sverdrup transport in the ocean from the warm to the cold side of the equator (opposite the winds) with a temporal lag of only a few months. The oceanic observations of subsurface temperature and a numerical model hindcast also indicate a clear relationship between this mode of wind-driven variability and changes in the zonal transport of the North Equatorial Countercurrent. It is estimated that the time-dependent oceanic flow is capable of providing a significant contribution to the damping of the SST dipole but that external forcing is essential to sustaining the coupled variability.


Sign in / Sign up

Export Citation Format

Share Document