return path
Recently Published Documents


TOTAL DOCUMENTS

133
(FIVE YEARS 25)

H-INDEX

12
(FIVE YEARS 2)

F1000Research ◽  
2021 ◽  
Vol 9 ◽  
pp. 261
Author(s):  
Hartmut Traunmüller

In standard Big Bang cosmology, the universe expanded from a very dense, hot and opaque initial state. The light that was last scattered about 380,000 years later, when the universe had become transparent, has been redshifted and is now seen as thermal radiation with a temperature of 2.7 K, the cosmic microwave background (CMB). However, since light escapes faster than matter can move, it is prudent to ask how we, made of matter from this very source, can still see the light. In order for this to be possible, the light must take a return path of the right length. A curved return path is possible in spatially closed, balloon-like models, but in standard cosmology, the universe is “flat” rather than balloon-like, and it lacks a boundary surface that might function as a reflector. Under these premises, radiation that once filled the universe homogeneously cannot do so permanently after expansion, and we cannot see the last scattering event. It is shown that the traditional calculation of the CMB temperature is inappropriate and that light emitted by any source inside the Big Bang universe earlier than half its “conformal age” can only become visible to us via a return path. Although often advanced as the best evidence for a hot Big Bang, the CMB actually tells against a formerly smaller universe and so do also distant galaxies.


2021 ◽  
Author(s):  
Andrew Poerschke
Keyword(s):  

2021 ◽  
Author(s):  
EDUARDO GIULIANI ◽  
AéCIO DE LIMA OLIVEIRA ◽  
GHENDY CARDOSO JUNIOR ◽  
GUSTAVO MARCHESAN ◽  
LEONARDO DE FREITAS SILVEIRA ◽  
...  

This work presents an accurate method for the calculation of the compensating impedances for an uncoventional three-phase rural distribution network using two overhead wires and the ground for energy transmission. This system is referred as T2F scheme, which is an inherently unsymmetrical 3-phase system. The paper deals with the compensating method using a series impedance in the earth return path and a shunt capacitance connected between the two wires. A simulation study in MATLAB/Simulink was conducted in a medium voltage radial distribution system to verify a need of compesating impedances by analysing of unbalaced voltages and voltage drop. This study shows that the system is capable of operating within the unbalancing factor standards and voltage drops limits, as seen in the simulations results.


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1265 ◽  
Author(s):  
Johanna Geis-Schroer ◽  
Sebastian Hubschneider ◽  
Lukas Held ◽  
Frederik Gielnik ◽  
Michael Armbruster ◽  
...  

In this contribution, measurement data of phase, neutral, and ground currents from real low voltage (LV) feeders in Germany is presented and analyzed. The data obtained is used to review and evaluate common modeling approaches for LV systems. An alternative modeling approach for detailed cable and ground modeling, which allows for the consideration of typical German LV earthing conditions and asymmetrical cable design, is proposed. Further, analytical calculation methods for model parameters are described and compared to laboratory measurement results of real LV cables. The models are then evaluated in terms of parameter sensitivity and parameter relevance, focusing on the influence of conventionally performed simplifications, such as neglecting house junction cables, shunt admittances, or temperature dependencies. By comparing measurement data from a real LV feeder to simulation results, the proposed modeling approach is validated.


F1000Research ◽  
2021 ◽  
Vol 9 ◽  
pp. 261
Author(s):  
Hartmut Traunmüller

In standard Big Bang cosmology, the universe expanded from a very dense, hot and opaque initial state. The light that was last scattered about 380,000 years later, when the universe had become transparent, has been redshifted and is now seen as thermal radiation with a temperature of 2.7 K, the cosmic microwave background (CMB). However, since light escapes faster than matter can move, it is prudent to ask how we, made of matter from this very source, can still see the light. In order for this to be possible, the light must take a return path of the right length. A curved return path is possible in spatially closed, balloon-like models, but in standard cosmology, the universe is “flat” rather than balloon-like, and it lacks a boundary surface that might function as a reflector. Under these premises, radiation that once filled the universe homogeneously cannot do so permanently after expansion, and we cannot see the last scattering event. It is shown that the traditional calculation of the CMB temperature is inappropriate and that light emitted by any source inside the Big Bang universe earlier than half its “conformal age” can only become visible to us via a return path. Although often advanced as the best evidence for a hot Big Bang, the CMB actually tells against a formerly smaller universe and so do also distant galaxies.


2021 ◽  
Author(s):  
S. Lilley ◽  
P. Jones ◽  
M. Davies ◽  
S. Tucker
Keyword(s):  

2020 ◽  
Vol 5 (11) ◽  
pp. 32-43
Author(s):  
Anna Gelfond ◽  

The article discusses the change in the architectural typology of abandoned objects over time. The influence of time on their town-planning position and typological components - function, design and form are analyzed. Abandoned object - a structure created by man, but not in use today. They went their way “ from reality to utopia.” An attempt is made to figure out why this happened and whether the return path is possible - “ from utopia to reality”. In conclusion, the concepts of general and environmental criteria for assessing the viability of abandoned objects are introduced, and on their basis the concept of the architectural and typological potential of a structure is formulated.


F1000Research ◽  
2020 ◽  
Vol 9 ◽  
pp. 261
Author(s):  
Hartmut Traunmüller

In standard Big Bang cosmology, the universe expanded from a very dense, hot and opaque initial state. The light that was last scattered about 380,000 years later, when the universe had become transparent, has been redshifted and is now seen as thermal radiation with a temperature of 2.7 K, the cosmic microwave background (CMB). However, since light escapes faster than matter can move, it is prudent to ask how we, made of matter from this very source, can still see the light. In order for this to be possible, the light must take a return path of the right length. A curved return path is possible in spatially closed, balloon-like models, but in standard cosmology, the universe is “flat” rather than balloon-like, and it lacks a boundary surface that might function as a reflector. Under these premises, radiation that once filled the universe homogeneously cannot do so permanently after expansion, and we cannot see the last scattering event. It is shown that the traditional calculation of the CMB temperature is inappropriate and that light emitted by any source inside the Big Bang universe earlier than half its “conformal age” can only become visible to us via a return path. Although often advanced as the best evidence for a hot Big Bang, the CMB actually tells against a formerly smaller universe and so do also distant galaxies.


Sign in / Sign up

Export Citation Format

Share Document