scholarly journals Sea level drop in the Mediterranean Sea: An indicator of deep water salinity and temperature changes?

2000 ◽  
Vol 27 (12) ◽  
pp. 1731-1734 ◽  
Author(s):  
Michael N. Tsimplis ◽  
Trevor F. Baker
2007 ◽  
Vol 37 (2) ◽  
pp. 338-358 ◽  
Author(s):  
Ichiro Fukumori ◽  
Dimitris Menemenlis ◽  
Tong Lee

Abstract A new basin-wide oscillation of the Mediterranean Sea is identified and analyzed using sea level observations from the Ocean Topography Experiment (TOPEX)/Poseidon satellite altimeter and a numerical ocean circulation model. More than 50% of the large-scale, nontidal, and non-pressure-driven variance of sea level can be attributed to this oscillation, which is nearly uniform in phase and amplitude across the entire basin. The oscillation has periods ranging from 10 days to several years and has a magnitude as large as 10 cm. The model suggests that the fluctuations are driven by winds at the Strait of Gibraltar and its neighboring region, including the Alboran Sea and a part of the Atlantic Ocean immediately to the west of the strait. Winds in this region force a net mass flux through the Strait of Gibraltar to which the Mediterranean Sea adjusts almost uniformly across its entire basin with depth-independent pressure perturbations. The wind-driven response can be explained in part by wind setup; a near-stationary balance is established between the along-strait wind in this forcing region and the sea level difference between the Mediterranean Sea and the Atlantic Ocean. The amplitude of this basin-wide wind-driven sea level fluctuation is inversely proportional to the setup region’s depth but is insensitive to its width including that of Gibraltar Strait. The wind-driven fluctuation is coherent with atmospheric pressure over the basin and contributes to the apparent deviation of the Mediterranean Sea from an inverse barometer response.


2019 ◽  
Author(s):  
Piero Lionello ◽  
Dario Conte ◽  
Marco Reale

Abstract. Large positive and negative sea level anomalies at the coast of the Mediterranean Sea are linked to intensity and position of cyclones moving along the Mediterranean storm track, with dynamics involving different factors. This analysis is based on a model hindcast and considers nine coastal stations, which are representative of sea level anomalies with different magnitude and characteristics. When a shallow water fetch is present, the wind around the cyclone center is the main cause of sea level positive and negative anomalies, depending on its onshore or offshore direction. The inverse barometer effect produces a positive anomaly at the coast near the cyclone pressure minimum and a negative anomaly at the opposite side of the Mediterranean Sea, because a cross-basin mean sea level pressure gradient is associated to the presence of a cyclone. Further, at some stations, negative sea level anomalies are reinforced by a residual water mass redistribution within the basin, which is associated with a transient response to the atmospheric pressure forcing. Though the link between presence of a cyclone in the Mediterranean has comparable importance for positive and negative anomalies, the relation between cyclone position and intensity is stronger for the magnitude of positive events. Area of cyclogenesis, track of the central minimum and position at the time of the event differ depending on the location where the sea level anomaly occurs and on its sign. The western Mediterranean is the main cyclogenesis area for both positive and negative anomalies, overall. Atlantic cyclones mainly produce positive sea level anomalies in the western basin. At the easternmost stations, positive anomalies are caused by Cyclogenesis in the Eastern Mediterranean. North Africa cyclogeneses are a major source of positive anomalies at the central African coast and negative anomalies at the eastern Mediterranean and North Aegean coast.


Author(s):  
Paulo S. Young ◽  
Helmut Zibrowius ◽  
Ghazi Bitar

The geographic distribution of Verruca stroemia and V. spengleri are reviewed. Verruca stroemia ranges from the White, Barents, Norwegian, and North Seas south to Portugal to the Algarve and to Gorringe Bank. All of the records of this species from the Mediterranean Sea are considered to be V. spengleri. Verruca spengleri occurs in the Azores and Madeira archipelagos, in southern Spain (Cádiz), throughout the Mediterranean Sea from Gibraltar to Lebanon, and in the Black Sea. But a distinct deep-water Verruca species seems to occur in the deep Mediterranean.


2021 ◽  
Author(s):  
Valeria Vaccher ◽  
Stefano Furlani ◽  
Sara Biolchi ◽  
Chiara Boccali ◽  
Alice Busetti ◽  
...  

<p>The Mediterranean basin displays a variety of neotectonics scenarios leading to positive or negative vertical displacement, which change the vertical position of former coastlines. As a result, the best locations to evaluate former sea levels and validate sea-level models are tectonically stable areas. There are a number of coastal areas considered to be stable based on the elevation of paleo sea-level markers, the absence of historical seismicity, and by their position far from major Mediterranean faults. We report here the results of swim surveys carried out at such locations following the Geoswim approach described by Furlani (2020) in nine coastal sectors of the central Mediterranean Sea (Egadi Island - Marettimo, Favignana, Levanzo, Gaeta Promontory, Circeo Promontory, North Sardinia - Razzoli, Budelli, Santa Maria, NW Sardinia – Capocaccia, Maddalena Archipelago, Tavolara Island, East of Malta - Ahrax Point, Bugibba-Qawra, Delimara, Addura, Palermo, Ansedonia Promontory). All the sites are considered to be tectonically stable, as validated by the elevation of sea-level indicators. In fact, modern and MIS5.5 (last interglacial) m.s.l. altitudes fit well with accepted figures based upon field data and model projections. Starting from precise morphometric parameters such as the size of tidal notches and indicative landforms and biological structures, we have developed a procedure that integrates multiple geomorphological and biological descriptors applicable to the vast spectrum of locally diverse coastal situations occurring in the Mediterranean Sea. We took detailed measurements of features such as modern and MIS5.5 tidal notches at 146 sites in all the areas, the absence of modern tidal notch at Circeo promontory, shore platforms, and MIS5.5 marine terraces at Egadi islands, Malta, and Palermo. Biological structures were also measured. In particular, vermetid platforms at Egadi, Palermo and Malta. The morphometric characteristics of these indicators depend on 1) local geological and structural constraints, 2) local geomorphotypes, 3) climate, sea, and weather conditions that affect geomorphic and biological processes, and 4) the sea level change history.</p>


Sign in / Sign up

Export Citation Format

Share Document