scholarly journals Slip distribution of the Lake Tennyson earthquake, New Zealand, as inferred from static stress changes and off fault aftershocks

1999 ◽  
Vol 26 (13) ◽  
pp. 1961-1964 ◽  
Author(s):  
Peter McGinty ◽  
Russell Robinson
2006 ◽  
Vol 96 (5) ◽  
pp. 911-924 ◽  
Author(s):  
E. Papadimitriou ◽  
V. Karakostas ◽  
M. Tranos ◽  
B. Ranguelov ◽  
D. Gospodinov

2020 ◽  
Vol 110 (2) ◽  
pp. 863-873 ◽  
Author(s):  
Margarita Segou ◽  
Tom Parsons

ABSTRACT Coseismic stress changes have been the primary physical principle used to explain aftershocks and triggered earthquakes. However, this method does not adequately forecast earthquake rates and diverse rupture populations when subjected to formal testing. We show that earthquake forecasts can be impaired by assumptions made in physics-based models such as the existence of hypothetical optimal faults and regional scale invariability of the stress field. We compare calculations made under these assumptions along with different realizations of a new conceptual triggering model that features a complete assay of all possible ruptures. In this concept, there always exists a set of theoretical planes that has positive failure stress conditions under a combination of background and coseismic static stress change. In the Earth, all of these theoretical planes may not exist, and if they do, they may not be ready to fail. Thus, the actual aftershock plane may not correspond to the plane with the maximum stress change value. This is consistent with observations that mainshocks commonly activate faults with exotic orientations and rakes. Our testing ground is the M 7.2, 2010 El Mayor–Cucapah earthquake sequence that activated multiple diverse fault populations across the United States–Mexico border in California and Baja California. We carry out a retrospective test involving 748 M≥3.0 triggered earthquakes that occurred during a 3 yr period after the mainshock. We find that a probabilistic expression of possible aftershock planes constrained by premainshock rupture patterns is strongly favored (89% of aftershocks consistent with static stress triggering) versus an optimal fault implementation (35% consistent). Results show that coseismic stress change magnitudes do not necessarily control earthquake triggering, instead we find that the summed background stress and coseismic stress change promotes diverse ruptures. Our model can thus explain earthquake triggering in regions where optimal plane mapping shows coseismic stress reduction.


2020 ◽  
Vol 12 (22) ◽  
pp. 3721
Author(s):  
Zhongqiu He ◽  
Ting Chen ◽  
Mingce Wang ◽  
Yanchong Li

The 2016 Kumamoto earthquake, including two large (Mw ≥ 6.0) foreshocks and an Mw 7.0 mainshock, occurred in the Hinagu and Futagawa fault zones in the middle of Kyushu island, Japan. Here, we obtain the complex coseismic deformation field associated with this earthquake from Advanced Land Observation Satellite-2 (ALOS-2) and Sentinel-1A Interferometric Synthetic Aperture Radar (InSAR) data. These InSAR data, in combination with available Global Positioning System (GPS) data, are then used to determine an optimal four-segment fault geometry with the jRi method, which considers both data misfit and the perturbation error from data noise. Our preferred slip distribution model indicates that the rupture is dominated by right-lateral strike-slip, with a significant normal slip component. The largest asperity is located on the northern segment of the Futagawa fault, with a maximum slip of 5.6 m at a 5–6 km depth. The estimated shallow slips along the Futagawa fault and northern Hinagu fault are consistent with the displacements of surface ruptures from the field investigation, suggesting a shallow slip deficit. The total geodetic moment release is estimated to be 4.89 × 1019 Nm (Mw 7.09), which is slightly larger than seismological estimates. The calculated static Coulomb stress changes induced by the preferred slip distribution model cannot completely explain the spatial distribution of aftershocks. Sensitivity analysis of Coulomb stress change implies that aftershocks in the stress shadow area may be driven by aseismic creep or triggered by dynamic stress transfer, requiring further investigation.


2020 ◽  
Author(s):  
Eyup Sopaci ◽  
Atilla Arda Özacar

<p>The clock of an earthquake can be advanced due to dynamic and static changes when a triggering signal is applied to a stress-loading fault. While static effects decrease rapidly with distance, dynamic effects can reach thousands of kilometers away. Therefore, earthquake triggering is traditionally associated to static stress changes at local distances and to dynamic effects at greater scales. However, static and dynamic effects near the triggering signal are often nested, thus identifying which effect dominates, becomes unclear. So far, earthquake triggering has been tested using different rate-and-state friction (RSF) laws utilizing alternative views of friction without much comparison. In this study, the analogy of an earthquake is simulated using single degree of freedom spring-block systems governed with three different RSF laws, namely “Dieterich”, “Ruina” and “Perrin”. First, the fault systems are evolved until they reach a stable limit cycle and then static, dynamic and their combination are applied as triggering signals. During synthetic simulations, effects of the triggering signal parameters (onset time, size, duration and frequency) and the fault system parameters (fault stiffness, characteristic slip distance, direct velocity and time dependent state effects) are tested separately. Our results indicate that earthquake triggering is controlled mainly by the onset time, size and duration of the triggering signal but not much sensitive to the signal frequency. In terms of fault system parameters, the fault stiffness and the direct velocity effect are the critical parameters in triggering processes. Among the tested RSF laws, “Ruina” law is more sensitive than “Dieterich” law to both static and dynamic changes and “Perrin” is apparently the most sensitive law to dynamic changes. Especially, when the triggering onset time is close to an unperturbed failure time (future earthquake), dynamic changes result the largest clock advancement, otherwise, static stress changes are substantially more effective. In the next step, realistic models will be established to simulate the effect of the recent (26 September 2019) Marmara earthquake with Mw=5.7 on the locked Kumburgaz fault segment of the North Anatolian Fault Zone. The triggering earthquake will be simulated by combining the static stress change computed via Coulomb law and the dynamic effects using ground motions recorded at broadband seismic stations within similar distances. Outcomes will help us to better understand the effects of static and dynamic changes on the seismic cycle of the Kumburgaz fault segment, which is expected to break soon with a possibly big earthquake causing damage at the metropolitan area of Istanbul in Turkey.</p>


2014 ◽  
Vol 9 (3) ◽  
pp. 365-372 ◽  
Author(s):  
Eisuke Fujita ◽  
◽  
Tomofumi Kozono ◽  
Norio Toda ◽  
Aiko Kikuchi ◽  
...  

The 2011 Tohoku mega-thrust earthquake caused huge crustal deformation over a wide are of Mainland Japan. Many mega-thrust earthquakes worldwide have triggered volcanic eruptions nearby, and it is assumed that stress changes due to the Tohoku earthquake resulted in a perturbation to the magma system. The objectives of our study is to evaluate this perturbation quantitatively and to analyze the mechanism of the interaction between mega-thrust earthquakes and volcanic eruptions. This paper focuses on quasi-static stress change due to viscous relaxation of a source region and the surrounding area.


Sign in / Sign up

Export Citation Format

Share Document