scholarly journals Effective radiative properties of bounded cascade absorbing clouds: Definition of an effective single-scattering albedo

2000 ◽  
Vol 105 (D16) ◽  
pp. 20635-20648 ◽  
Author(s):  
Frédéric Szczap ◽  
Harumi Isaka ◽  
Marcel Saute ◽  
Bernard Guillemet ◽  
Andrey Ioltukhovski
2020 ◽  
Author(s):  
Martine Collaud Coen ◽  
Elisabeth Andrews ◽  
Cathrine Lund Myhre ◽  
Jenny Hand ◽  
Marco Pandolfi ◽  
...  

<p>In order to assess the global evolution of aerosol parameters affecting climate change, a long-term trend analyses of aerosol optical properties were performed on time series from 52 stations situated across five continents. The time series of measured scattering, backscattering and absorption coefficients as well as the derived single scattering albedo, backscattering fraction, scattering and absorption Ångström exponents covered at least 10 years and up to 40 years for some stations. The non-parametric seasonal Mann-Kendall (MK) statistical test associated with several prewhitening methods and with the Sen’s slope were used as main trend analysis methods. Comparisons with General Least Mean Square associated with Autoregressive Bootstrap (GLS/ARB) and with standard Least Mean Square analysis (LMS) enabled confirmation of the detected MK statistically significant trends and the assessment of advantages and limitations of each method. Currently, scattering and backscattering coefficients trends are mostly decreasing in Europe and North America and are not statistically significant in Asia, while polar stations exhibit a mix of increasing and decreasing trends. A few increasing trends are also found at some stations in North America and Australia. Absorption coefficients time series also exhibit primarily decreasing trends. For single scattering albedo, 52% of the sites exhibit statistically significant positive trends, mostly in Asia, Eastern/Northern Europe and Arctic, 18% of sites exhibit statistically significant negative trends, mostly in central Europe and central North America, while the remaining 30% of sites have trends, which are not statistically significant. In addition to evaluating trends for the overall time series, the evolution of the trends in sequential 10 year segments was also analyzed. For scattering and backscattering, statistically significant increasing 10 year trends are primarily found for earlier periods (10 year trends ending in 2010-2015) for polar stations and Mauna Loa. For most of the stations, the present-day statistically significant decreasing 10 year trends of the single scattering albedo were preceded by not statistically significant and statistically significant increasing 10 year trends. The effect of air pollution abatement policies in continental North America is very obvious in the 10 year trends of the scattering coefficient – there is a shift to statistically significant negative trends in 2010-2011 for all stations in the eastern and central US. This long-term trend analysis of aerosol radiative properties with a broad spatial coverage enables a better global view of potential aerosol effects on climate changes.</p>


2020 ◽  
Vol 22 (11) ◽  
Author(s):  
Llorenç Cremonesi ◽  
Chloé Minnai ◽  
Fabio Ferri ◽  
Alberto Parola ◽  
Bruno Paroli ◽  
...  

AbstractThe influence of the internal structure of inhomogeneous particles on their radiative properties is an open issue repeatedly questioned in many fields of science and technology. The importance of a refined description of the particle composition and structure, going beyond mean-field approximations, is generally recognized. Here, we focus on describing internal inhomogeneities from a statistical point of view. We introduce an analytical description based on the two-point density-density correlation function, or the corresponding static structure factor, to calculate the extinction cross sections. The model agrees with numerical predictions and is validated experimentally with colloidal aggregates in the 0.3–6 μm size range, which serve as an inhomogeneous model system that can be characterized enough to work without any free parameters. The model can be tightly compared to measurements with single particle extinction and scattering and spectrophotometry and suggests a simple behavior for 90° scattering from fractal aggregates as a function of extinction, which is also confirmed experimentally and numerically. We also discuss the case of absorbing particles and report the experimental results for water suspensions of black carbon for both the forward and 90° scattering properties. In this case, the total scattering and the extinction cross sections determine the single scattering albedo, which agrees with numerical simulations. The three parameters necessary to feed radiative transfer models, namely, extinction, asymmetry parameter, and single scattering albedo, can all be set by the analytical model, with explicit dependence on a few parameters. Results are applicable to radiative transfer problems in climate, paleoclimate, star and planetary formation, and nanoparticle optical characterization for science and industry, including the intercomparison of different optical methods such as those adopted by ISO standards.


2020 ◽  
Author(s):  
Martine Collaud Coen ◽  
Elisabeth Andrews ◽  
Andrés Alastuey ◽  
Todor Petkov Arsov ◽  
John Backman ◽  
...  

Abstract. In order to assess the global evolution of aerosol parameters affecting climate change, a long-term trend analyses of aerosol optical properties were performed on time series from 52 stations situated across five continents. The time series of measured scattering, backscattering and absorption coefficients as well as the derived single scattering albedo, backscattering fraction, scattering and absorption Ångström exponents covered at least 10 years and up to 40 years for some stations. The non-parametric seasonal Mann–Kendall (MK) statistical test associated with several prewhitening methods and with the Sen's slope were used as main trend analysis methods. Comparisons with General Least Mean Square associated with Autoregressive Bootstrap (GLS/ARB) and with standard Least Mean Square analysis (LMS) enabled confirmation of the detected MK statistically significant trends and the assessment of advantages and limitations of each method. Currently, scattering and backscattering coefficients trends are mostly decreasing in Europe and North America and are not statistically significant in Asia, while polar stations exhibit a mix of increasing and decreasing trends. A few increasing trends are also found at some stations in North America and Australia. Absorption coefficients time series also exhibit primarily decreasing trends. For single scattering albedo, 52 % of the sites exhibit statistically significant positive trends, mostly in Asia, Eastern/Northern Europe and Arctic, 18 % of sites exhibit statistically significant negative trends, mostly in central Europe and central North America, while the remaining 30 % of sites have trends, which are not statistically significant. In addition to evaluating trends for the overall time series, the evolution of the trends in sequential 10 year segments was also analyzed. For scattering and backscattering, statistically significant increasing 10 year trends are primarily found for earlier periods (10 year trends ending in 2010–2015) for polar stations and Mauna Loa. For most of the stations, the present-day statistically significant decreasing 10 year trends of the single scattering albedo were preceded by not statistically significant and statistically significant increasing 10 year trends. The effect of air pollution abatement policies in continental North America is very obvious in the 10 year trends of the scattering coefficient – there is a shift to statistically significant negative trends in 2010–2011 for all stations in the eastern and central US. This long-term trend analysis of aerosol radiative properties with a broad spatial coverage enables a better global view of potential aerosol effects on climate changes.


2006 ◽  
Vol 6 (6) ◽  
pp. 13367-13386 ◽  
Author(s):  
E. I. Kassianov ◽  
T. P. Ackerman ◽  
J. C. Barnard ◽  
C. J. Flynn

Abstract. Multi-filter Rotating Shadowband Radiometers (MFRSRs) provide routine measurements of the aerosol optical depth (τ) at six wavelengths (0.415, 0.5, 0.615, 0.673, 0.870 and 0.94 μm). The single-scattering albedo (ϖ0) is typically estimated from the MFRSR measurements by assuming the asymmetry parameter (g). In most instances, however, it is not easy to set an appropriate value of g due to its strong temporal and spatial variability. Here, we introduce and validate an updated version of our retrieval technique that allows one to estimate simultaneously ϖ0 and g for different types of aerosol. We use the aerosol and radiative properties obtained during the Atmospheric Radiation Measurement (ARM) Aerosol Intensive Operational Period (IOP) to validate our retrieval in two ways. First, the MFRSR-retrieved optical properties are compared with those obtained from independent surface, Aerosol Robotic Network (AERONET) and aircraft measurements. The MFRSR-retrieved optical properties are in reasonable agreement with these independent measurements. Second, we perform radiative closure experiments using the MFRSR-retrieved optical properties. The calculated broadband values of the direct and diffuse fluxes are comparable (~5 W/m2) to those obtained from measurements.


2006 ◽  
Vol 63 (3) ◽  
pp. 1082-1092 ◽  
Author(s):  
S. K. Satheesh ◽  
J. Srinivasan

Abstract Radiative forcing of aerosols is much more difficult to estimate than that of well-mixed gases due to the large spatial variability of aerosols and the lack of an adequate database on their radiative properties. Estimation of aerosol radiative forcing generally requires knowledge of its chemical composition, which is sparse. Ground-based sky radiance measurements [e.g., aerosol robotic network (AERONET)] can provide key parameters such as the single-scattering albedo, but in shipborne experiments over the ocean it is difficult to make sky radiance measurements and hence these experiments cannot provide parameters such as the single-scattering albedo. However, aerosol spectral optical depth data (cruise based as well as satellite retrieved) are available quite extensively over the ocean. Spectral optical depth measurements have been available since the 1970s, and spectral turbidity measurements (carried out at meteorological departments all over the world) have been available for several decades, while long-term continuous chemical composition information is not available. A new method to differentiate between scattering and absorbing aerosols is proposed here. This can be used to derive simple aerosol models that are optically equivalent and can simulate the observed aerosol optical properties and radiative fluxes, from spectral optical depth measurements. Thus, aerosol single-scattering albedo and, hence, aerosol radiative forcing can be estimated. Note that the proposed method is to estimate clear-sky aerosol radiative forcing (over regions where chemical composition data or sky radiance data are not available) and not to infer its exact chemical composition. Using several independent datasets from field experiments, it is demonstrated that the proposed method can be used to estimate aerosol radiative forcing (from spectral optical depths) with an accuracy of ±2 W m−2.


2020 ◽  
Vol 20 (14) ◽  
pp. 8867-8908 ◽  
Author(s):  
Martine Collaud Coen ◽  
Elisabeth Andrews ◽  
Andrés Alastuey ◽  
Todor Petkov Arsov ◽  
John Backman ◽  
...  

Abstract. In order to assess the evolution of aerosol parameters affecting climate change, a long-term trend analysis of aerosol optical properties was performed on time series from 52 stations situated across five continents. The time series of measured scattering, backscattering and absorption coefficients as well as the derived single scattering albedo, backscattering fraction, scattering and absorption Ångström exponents covered at least 10 years and up to 40 years for some stations. The non-parametric seasonal Mann–Kendall (MK) statistical test associated with several pre-whitening methods and with Sen's slope was used as the main trend analysis method. Comparisons with general least mean square associated with autoregressive bootstrap (GLS/ARB) and with standard least mean square analysis (LMS) enabled confirmation of the detected MK statistically significant trends and the assessment of advantages and limitations of each method. Currently, scattering and backscattering coefficient trends are mostly decreasing in Europe and North America and are not statistically significant in Asia, while polar stations exhibit a mix of increasing and decreasing trends. A few increasing trends are also found at some stations in North America and Australia. Absorption coefficient time series also exhibit primarily decreasing trends. For single scattering albedo, 52 % of the sites exhibit statistically significant positive trends, mostly in Asia, eastern/northern Europe and the Arctic, 22 % of sites exhibit statistically significant negative trends, mostly in central Europe and central North America, while the remaining 26 % of sites have trends which are not statistically significant. In addition to evaluating trends for the overall time series, the evolution of the trends in sequential 10-year segments was also analyzed. For scattering and backscattering, statistically significant increasing 10-year trends are primarily found for earlier periods (10-year trends ending in 2010–2015) for polar stations and Mauna Loa. For most of the stations, the present-day statistically significant decreasing 10-year trends of the single scattering albedo were preceded by not statistically significant and statistically significant increasing 10-year trends. The effect of air pollution abatement policies in continental North America is very obvious in the 10-year trends of the scattering coefficient – there is a shift to statistically significant negative trends in 2009–2012 for all stations in the eastern and central USA. This long-term trend analysis of aerosol radiative properties with a broad spatial coverage provides insight into potential aerosol effects on climate changes.


2016 ◽  
Vol 9 ◽  
pp. ASWR.S39226 ◽  
Author(s):  
Erica J. Alston ◽  
Irina N. Sokolik

Aerosols comprise a critical portion of the Earth's climate due to their radiative properties. More emphasis is now being placed upon understanding radiative effects of aerosols on a regional scale. The primary goal of this research is to estimate the aerosol direct radiative effect (DRE) and examine its dynamical nature in the Southeastern U.S. based on satellite data obtained from the moderate-resolution imaging spectroradiometer (MODIS) and multi-angle imaging spectroradiometer (MISR) instruments onboard the Terra satellite from 2000 to 2011. This 12-year analysis utilizes satellite measurements of aerosol optical depth (AOD), surface albedo, cloud fraction, and single-scattering albedo over the Southeastern U.S. as inputs to a first-order approximation of regional top of the atmosphere DRE. Results indicate that AOD is the primary driver of DRE estimates, with surface albedo and single-scattering albedo having some appreciable effects as well. During the cooler months, the minima (less negative) of DRE vary between -6 and -3 W/m2, and during the warmer months, there is more variation with DRE maxima varying between -24 and -12.6 W/m2 for MODIS and -22.5 and -11 W/m2 for MISR. Yet if we take an average of the monthly DRE over time (12 years), we estimate Δ F = -7.57 W/m2 for MODIS and Δ F = -5.72 W/m2 for MISR. Regional assessments of the DRE show that background levels of DRE are similar to the 12-year average of satellite-based DRE, with urbanized areas having increased levels of DRE compared to background conditions. Over the study period, DRE has a positive trend (becoming less negative), which implies that the region could lose this protective top of the atmosphere cooling with the advancement of climate change impacting the biogenic emissions of aerosols.


2007 ◽  
Vol 7 (12) ◽  
pp. 3341-3351 ◽  
Author(s):  
E. I. Kassianov ◽  
C. J. Flynn ◽  
T. P. Ackerman ◽  
J. C. Barnard

Abstract. Multi-filter Rotating Shadowband Radiometers (MFRSRs) provide routine measurements of the aerosol optical depth (τ) at six wavelengths (0.415, 0.5, 0.615, 0.673, 0.870 and 0.94 μm). The single-scattering albedo (π0) is typically estimated from the MFRSR measurements by assuming the asymmetry parameter (g). In most instances, however, it is not easy to set an appropriate value of g due to its strong temporal and spatial variability. Here, we introduce and validate an updated version of our retrieval technique that allows one to estimate simultaneously π0 and g for different types of aerosol. We use the aerosol and radiative properties obtained during the Atmospheric Radiation Measurement (ARM) Program's Aerosol Intensive Operational Period (IOP) to validate our retrieval in two ways. First, the MFRSR-retrieved optical properties are compared with those obtained from independent surface, Aerosol Robotic Network (AERONET), and aircraft measurements. The MFRSR-retrieved optical properties are in reasonable agreement with these independent measurements. Second, we perform radiative closure experiments using the MFRSR-retrieved optical properties. The calculated broadband values of the direct and diffuse fluxes are comparable (~5 W/m2) to those obtained from measurements.


2004 ◽  
Vol 4 (5) ◽  
pp. 1255-1263 ◽  
Author(s):  
B. Mayer ◽  
M. Schröder ◽  
R. Preusker ◽  
L. Schüller

Abstract. Cloud single scattering properties are mainly determined by the effective radius of the droplet size distribution. There are only few exceptions where the shape of the size distribution affects the optical properties, in particular the rainbow and the glory directions of the scattering phase function. Using observations by the Compact Airborne Spectrographic Imager (CASI) in 180° backscatter geometry, we found that high angular resolution aircraft observations of the glory provide unique new information which is not available from traditional remote sensing techniques: Using only one single wavelength, 753nm, we were able to determine not only optical thickness and effective radius, but also the width of the size distribution at cloud top. Applying this novel technique to the ACE-2 CLOUDYCOLUMN experiment, we found that the size distributions were much narrower than usually assumed in radiation calculations which is in agreement with in-situ observations during this campaign. While the shape of the size distribution has only little relevance for the radiative properties of clouds, it is extremely important for understanding their formation and evolution.


2013 ◽  
Vol 6 (10) ◽  
pp. 2659-2669 ◽  
Author(s):  
A. Bayat ◽  
H. R. Khalesifard ◽  
A. Masoumi

Abstract. The polarized phase function of atmospheric aerosols has been investigated for the atmosphere of Zanjan, a city in northwest Iran. To do this, aerosol optical depth, Ångström exponent, single-scattering albedo, and polarized phase function have been retrieved from the measurements of a Cimel CE 318-2 polarized sun-photometer from February 2010 to December 2012. The results show that the maximum value of aerosol polarized phase function as well as the polarized phase function retrieved for a specific scattering angle (i.e., 60°) are strongly correlated (R = 0.95 and 0.95, respectively) with the Ångström exponent. The latter has a meaningful variation with respect to the changes in the complex refractive index of the atmospheric aerosols. Furthermore the polarized phase function shows a moderate negative correlation with respect to the atmospheric aerosol optical depth and single-scattering albedo (R = −0.76 and −0.33, respectively). Therefore the polarized phase function can be regarded as a key parameter to characterize the atmospheric particles of the region – a populated city in the semi-arid area and surrounded by some dust sources of the Earth's dust belt.


Sign in / Sign up

Export Citation Format

Share Document