scholarly journals Light extinction and scattering from aggregates composed of submicron particles

2020 ◽  
Vol 22 (11) ◽  
Author(s):  
Llorenç Cremonesi ◽  
Chloé Minnai ◽  
Fabio Ferri ◽  
Alberto Parola ◽  
Bruno Paroli ◽  
...  

AbstractThe influence of the internal structure of inhomogeneous particles on their radiative properties is an open issue repeatedly questioned in many fields of science and technology. The importance of a refined description of the particle composition and structure, going beyond mean-field approximations, is generally recognized. Here, we focus on describing internal inhomogeneities from a statistical point of view. We introduce an analytical description based on the two-point density-density correlation function, or the corresponding static structure factor, to calculate the extinction cross sections. The model agrees with numerical predictions and is validated experimentally with colloidal aggregates in the 0.3–6 μm size range, which serve as an inhomogeneous model system that can be characterized enough to work without any free parameters. The model can be tightly compared to measurements with single particle extinction and scattering and spectrophotometry and suggests a simple behavior for 90° scattering from fractal aggregates as a function of extinction, which is also confirmed experimentally and numerically. We also discuss the case of absorbing particles and report the experimental results for water suspensions of black carbon for both the forward and 90° scattering properties. In this case, the total scattering and the extinction cross sections determine the single scattering albedo, which agrees with numerical simulations. The three parameters necessary to feed radiative transfer models, namely, extinction, asymmetry parameter, and single scattering albedo, can all be set by the analytical model, with explicit dependence on a few parameters. Results are applicable to radiative transfer problems in climate, paleoclimate, star and planetary formation, and nanoparticle optical characterization for science and industry, including the intercomparison of different optical methods such as those adopted by ISO standards.

2000 ◽  
Vol 105 (D16) ◽  
pp. 20635-20648 ◽  
Author(s):  
Frédéric Szczap ◽  
Harumi Isaka ◽  
Marcel Saute ◽  
Bernard Guillemet ◽  
Andrey Ioltukhovski

2007 ◽  
Vol 7 (6) ◽  
pp. 17401-17427
Author(s):  
J. J. Michalsky ◽  
P. W. Kiedron

Abstract. The first successful deployment of the fully-operational ultraviolet rotating shadow-band spectroradiometer occurred during the May 2003 U.S. Department of Energy's Atmospheric Radiation Measurement program's Aerosol Intensive Observation Period. The aerosol properties in the visible range were characterized using redundant measurements with several instruments to determine the column aerosol optical depth, the single scattering albedo, and the asymmetry parameter needed as input for radiative transfer calculations of the downwelling direct normal and diffuse horizontal solar irradiance in clear-sky conditions. The Tropospheric Ultraviolet and Visible (TUV) radiative transfer model developed by Madronich and his colleagues at the U.S. National Center for Atmospheric Research was used for the calculations of the spectral irradiance between 300–360 nm. Since there are few ultraviolet measurements of aerosol properties, most of the input aerosol data for the radiative transfer model are based on the assumption that UV input parameters can be extrapolated from the visible portion of the spectrum. Disagreements between available extraterrestrial spectra, which are discussed briefly, suggested that instead of comparing irradiances that measured and modeled spectral transmittances between 300–360 nm should be compared for the seven cases studied. These cases included low to moderate aerosol loads and low to high solar-zenith angles. A procedure for retrieving single scattering albedo in the ultraviolet based on the comparisons of direct and diffuse transmittance is outlined.


2021 ◽  
Vol 2 (1-4) ◽  
Author(s):  
Gabriele Fasano ◽  
Henri Diémoz ◽  
Ilias Fountoulakis ◽  
Claudio Cassardo ◽  
Rei Kudo ◽  
...  

AbstractAtmospheric aerosols play an important role in Earth’s radiative balance, directly interacting with solar radiation or influencing cloud formation and properties. In order to assess their radiative impact, it is necessary to accurately characterise their optical properties, together with their spatial and vertical distribution. The information on aerosol vertical profile is often scarce, in particular in mountainous, complex terrains. This study presents the first attempt to evaluate the shortwave aerosol direct radiative effect in the Aosta Valley, a mountainous region in the Northwestern Italian Alps. Ground-based, remote sensing instruments (a sky radiometer and an Automated Lidar Ceilometer) are used to derive two descriptions of the aerosol properties and vertical distribution: a first, more accurate description, which includes the whole spectral information about the aerosol extinction coefficient, phase function and single scattering albedo; a second, more approximate one, which only relies on spectrally constant values of aerosol single scattering albedo and asymmetry factor. This information is used as input for radiative transfer simulations, which allow to estimate, in cloudless conditions, the shortwave aerosol direct radiative effect and the vertical profile of the instantaneous heating rates in the lower layers of the atmosphere. The simulations obtained with the two descriptions do not differ significantly: they highlight a strong surface dimming (between − 25 and − 50 W m− 2) due to the presence of aerosol, with a considerable radiative absorption inside the atmospheric column (around + 30 W m− 2), and an overall small cooling effect for the Earth-atmospheric system. The absorption of solar radiation within the atmospheric column due to aerosol leads to instantaneous heating rates up to 1.5 K day− 1 in the tropospheric layers below 6 km a.s.l. These results show that, in some conditions, the shortwave aerosol direct radiative effect can be considerable even in this Alpine environment, usually considered as relatively pristine (yearly average PM10 concentration about 20 μg m− 3).


2020 ◽  
Author(s):  
Martine Collaud Coen ◽  
Elisabeth Andrews ◽  
Cathrine Lund Myhre ◽  
Jenny Hand ◽  
Marco Pandolfi ◽  
...  

<p>In order to assess the global evolution of aerosol parameters affecting climate change, a long-term trend analyses of aerosol optical properties were performed on time series from 52 stations situated across five continents. The time series of measured scattering, backscattering and absorption coefficients as well as the derived single scattering albedo, backscattering fraction, scattering and absorption Ångström exponents covered at least 10 years and up to 40 years for some stations. The non-parametric seasonal Mann-Kendall (MK) statistical test associated with several prewhitening methods and with the Sen’s slope were used as main trend analysis methods. Comparisons with General Least Mean Square associated with Autoregressive Bootstrap (GLS/ARB) and with standard Least Mean Square analysis (LMS) enabled confirmation of the detected MK statistically significant trends and the assessment of advantages and limitations of each method. Currently, scattering and backscattering coefficients trends are mostly decreasing in Europe and North America and are not statistically significant in Asia, while polar stations exhibit a mix of increasing and decreasing trends. A few increasing trends are also found at some stations in North America and Australia. Absorption coefficients time series also exhibit primarily decreasing trends. For single scattering albedo, 52% of the sites exhibit statistically significant positive trends, mostly in Asia, Eastern/Northern Europe and Arctic, 18% of sites exhibit statistically significant negative trends, mostly in central Europe and central North America, while the remaining 30% of sites have trends, which are not statistically significant. In addition to evaluating trends for the overall time series, the evolution of the trends in sequential 10 year segments was also analyzed. For scattering and backscattering, statistically significant increasing 10 year trends are primarily found for earlier periods (10 year trends ending in 2010-2015) for polar stations and Mauna Loa. For most of the stations, the present-day statistically significant decreasing 10 year trends of the single scattering albedo were preceded by not statistically significant and statistically significant increasing 10 year trends. The effect of air pollution abatement policies in continental North America is very obvious in the 10 year trends of the scattering coefficient – there is a shift to statistically significant negative trends in 2010-2011 for all stations in the eastern and central US. This long-term trend analysis of aerosol radiative properties with a broad spatial coverage enables a better global view of potential aerosol effects on climate changes.</p>


2021 ◽  
Author(s):  
Baseerat Romshoo ◽  
Thomas Müller ◽  
Sascha Pfeifer ◽  
Jorge Saturno ◽  
Andreas Nowak ◽  
...  

Abstract. The formation of black carbon fractal aggregates (BCFAs) from combustion and subsequent aging involves several stages resulting in modifications of particle size, morphology, and composition over time. To understand and quantify how each of these modifications influences the BC radiative forcing, the radiative properties of BCFAs are modelled. Owing to the high computational time involved in numerical modelling, there are some gaps in terms of data coverage and knowledge regarding how radiative properties of coated BCFAs vary over the range of different factors (size, shape, and composition). This investigation bridged those gaps by following a state-of-the-art description scheme of BCFAs based on morphology, composition, and wavelength. The BCFAs radiative properties were investigated as a function of the radius of the primary particle (ao), fractal dimension (Df), fraction of organics (forganics), wavelength (λ), and mobility diameter (Dmob). The radiative properties are calculated using the multiple sphere T-matrix (MSTM) method. Amongst size, morphology, and composition, all the radiative properties showed the highest variability with changing size. The cross-sections varied from 0.0001 μm2 to 0.1 μm2 for BCFA Dmob ranging from 24 nm to 810 nm. After size or Dmob, the absorption cross-section (Cabs) and BC mass absorption cross-section (MACBC) showed the highest sensitivity towards composition or forganics, whereas the asymmetry parameter (g) showed higher dependence on morphology, which is represented by Df. The Ångstrom absorption exponent varied from 1.06 up to 3.6 and increases with the fraction of organics (forganics). The values of the absorption enhancement factor (Eλ) were found between 1.01 and 3.28 in the visible spectrum. The Eλ was derived from Mie calculations for coated volume equivalent spheres, and from MSTM for coated BCFAs. Mie calculated enhancement factors were found to be larger by a factor of 1.1 to 1.5 than their corresponding values calculated from the MSTM method. It is shown that radiative forcings are highly sensitive towards modifications in morphology and composition. The black carbon radiative forcing ΔFTOA (Wm−2) decreases up to 61 % as the BCFA becomes more compact in morphology. Whereas, there is a decrease of > 50 % in ΔFTOA as the organic content of the particle increase up to 90 %. Based on our results, which showed a significant effect of coating and morphology on the BC radiative properties, a parametrization scheme for radiative properties of BC fractal aggregates was developed, which is applicable for modelling, ambient, and laboratory-based BC studies. The parameterization scheme for the cross-sections (extinction, absorption, and scattering), single scattering albedo (SSA), and asymmetry parameter (g) of pure and coated BCFAs as a function of Dmob were derived from tabulated results of the MSTM method. Spanning over an extensive parameter space, the developed parametrization scheme showed promisingly high accuracy up to 98 % for the cross-sections, 97 % for single scattering albedos (SSA), and 82 % for asymmetry parameter (g).


2008 ◽  
Vol 8 (5) ◽  
pp. 17987-18005 ◽  
Author(s):  
A. Bagheri ◽  
B. Kjeldstad ◽  
B. Johnsen

Abstract. The aerosol optical depth (AOD) from biomass burning aerosols from eastern Europe was measured in Trondheim, Norway (63.43° N , 10.43° E) in May 2006. The event was observed as far as the Arctic. In the first part of this paper, the surface measurements of direct and global UV radiation (and retrieved AOD) are used to simulate the data using a radiative transfer model. Measured and simulated data were used to study the effect of biomass aerosol on the levels of surface UV radiation. We found reductions of up to 31%, 15% and 2% in direct, global and diffuse surface UV irradiance (at 350 nm, SZA=50°±0.5°) as compared to typical aerosol conditions. In the second part of our study, surface measurements of global and direct irradiance at five wavelength in UVB and UVA (305, 313, 320, 340 and 380 nm) were coupled with a radiative transfer model to produce values of aerosol single scattering albedo, ω. The aerosol single scattering albedo for biomass aerosols is compared to ω for background aerosols. The values of ω for biomass aerosols were 0.76 at 305 nm, 0.75 at 313 nm, 0.79 at 320 nm, 0.72 at 340 nm and 0.80 at 380 nm.


2012 ◽  
Vol 12 (23) ◽  
pp. 11695-11721 ◽  
Author(s):  
P. J. Sheridan ◽  
E. Andrews ◽  
J. A. Ogren ◽  
J. L. Tackett ◽  
D. M. Winker

Abstract. Between June 2006 and September 2009, an instrumented light aircraft measured over 400 vertical profiles of aerosol and trace gas properties over eastern and central Illinois. The primary objectives of this program were to (1) measure the in situ aerosol properties and determine their vertical and temporal variability and (2) relate these aircraft measurements to concurrent surface and satellite measurements. The primary profile location was within 15 km of the NOAA/ESRL surface aerosol monitoring station near Bondville, Illinois. Identical instruments at the surface and on the aircraft ensured that the data from both platforms would be directly comparable and permitted a determination of how representative surface aerosol properties were of the lower column. Aircraft profiles were also conducted occasionally at two other nearby locations to increase the frequency of A-Train satellite underflights for the purpose of comparing in situ and satellite-retrieved aerosol data. Measurements of aerosol properties conducted at low relative humidity over the Bondville site compare well with the analogous surface aerosol data and do not indicate any major sampling issues or that the aerosol is radically different at the surface compared with the lowest flyby altitude of ~ 240 m above ground level. Statistical analyses of the in situ vertical profile data indicate that aerosol light scattering and absorption (related to aerosol amount) decreases substantially with increasing altitude. Parameters related to the nature of the aerosol (e.g., single-scattering albedo, Ångström exponent, etc.), however, are relatively constant throughout the mixed layer, and do not vary as much as the aerosol amount throughout the profile. While individual profiles often showed more variability, the median in situ single-scattering albedo was 0.93–0.95 for all sampled altitudes. Several parameters (e.g., submicrometer scattering fraction, hemispheric backscattering fraction, and scattering Ångström exponent) suggest that the fraction of smaller particles in the aerosol is larger near the surface than at high altitudes. The observed dependence of scattering on size, wavelength, angular integration range, and relative humidity, together with the spectral dependence of absorption, show that the aerosol at higher altitudes is larger, less hygroscopic, and more strongly absorbing at shorter wavelengths, suggesting an increased contribution from dust or organic aerosols. The aerosol profiles show significant differences among seasons. The largest amounts of aerosol (as determined by median light extinction profile measurements) throughout most of the sampled column were observed during summer, with the lowest amounts in the winter and intermediate values in the spring and fall. The highest three profile levels (3.1, 3.7, 4.6 km), however, showed larger median extinction values in the spring, which could reflect long-range transport of dust or smoke aerosols. The aerosols in the mixed layer were darkest (i.e., lowest single-scattering albedo) in the fall, in agreement with surface measurements at Bondville and other continental sites in the US. In situ profiles of aerosol radiative forcing efficiency showed little seasonal or vertical variability. Underflights of the CALIPSO satellite show reasonable agreement in a majority of retrieved profiles between aircraft-measured extinction at 532 nm (adjusted to ambient relative humidity) and CALIPSO-retrieved extinction, and suggest that routine aircraft profiling programs can be used to better understand and validate satellite retrieval algorithms. CALIPSO tended to overestimate the aerosol extinction at this location in some boundary layer flight segments when scattered or broken clouds were present, which could be related to problems with CALIPSO cloud screening methods. The in situ aircraft-collected aerosol data suggest extinction thresholds for the likelihood of aerosol layers being detected by the CALIOP lidar. In this study, aerosol layers with light extinction (532 nm) values > 50 Mm−1 were detected by CALIPSO ~ 95% of the time, while aerosol layers with extinction values lower than 10 Mm−1 had a detection efficiency of < 2%. For all collocated comparison cases, a 50% probability of detection falls at an in situ extinction level of 20–25 Mm−1. These statistical data offer guidance as to the likelihood of CALIPSO's ability to retrieve aerosol extinction at various locations around the globe.


Sign in / Sign up

Export Citation Format

Share Document