scholarly journals Static stress transfer during the 2002 Nenana Mountain-Denali Fault, Alaska, earthquake sequence

2003 ◽  
Vol 30 (6) ◽  
Author(s):  
Greg Anderson ◽  
Chen Ji
2020 ◽  
Author(s):  
Juan A. Ochoa Chavez ◽  
Diane Doser

Supplemental Material 1 contains relocated aftershocks of 30 July 1972 sequence. Supplemental Material 2 contains relocation parameters used in double-difference algorithm (HYPODD).<br>


2020 ◽  
Vol 110 (2) ◽  
pp. 863-873 ◽  
Author(s):  
Margarita Segou ◽  
Tom Parsons

ABSTRACT Coseismic stress changes have been the primary physical principle used to explain aftershocks and triggered earthquakes. However, this method does not adequately forecast earthquake rates and diverse rupture populations when subjected to formal testing. We show that earthquake forecasts can be impaired by assumptions made in physics-based models such as the existence of hypothetical optimal faults and regional scale invariability of the stress field. We compare calculations made under these assumptions along with different realizations of a new conceptual triggering model that features a complete assay of all possible ruptures. In this concept, there always exists a set of theoretical planes that has positive failure stress conditions under a combination of background and coseismic static stress change. In the Earth, all of these theoretical planes may not exist, and if they do, they may not be ready to fail. Thus, the actual aftershock plane may not correspond to the plane with the maximum stress change value. This is consistent with observations that mainshocks commonly activate faults with exotic orientations and rakes. Our testing ground is the M 7.2, 2010 El Mayor–Cucapah earthquake sequence that activated multiple diverse fault populations across the United States–Mexico border in California and Baja California. We carry out a retrospective test involving 748 M≥3.0 triggered earthquakes that occurred during a 3 yr period after the mainshock. We find that a probabilistic expression of possible aftershock planes constrained by premainshock rupture patterns is strongly favored (89% of aftershocks consistent with static stress triggering) versus an optimal fault implementation (35% consistent). Results show that coseismic stress change magnitudes do not necessarily control earthquake triggering, instead we find that the summed background stress and coseismic stress change promotes diverse ruptures. Our model can thus explain earthquake triggering in regions where optimal plane mapping shows coseismic stress reduction.


2014 ◽  
Vol 19 (1) ◽  
pp. 273-273
Author(s):  
Athanassios Ganas ◽  
Zafeiria Roumelioti ◽  
Vassilios Karastathis ◽  
Konstantinos Chousianitis ◽  
Alexandra Moshou ◽  
...  

2017 ◽  
Vol 212 (1) ◽  
pp. 42-53 ◽  
Author(s):  
J Kariche ◽  
M Meghraoui ◽  
Y Timoulali ◽  
E Cetin ◽  
R Toussaint

2013 ◽  
Vol 13 (2) ◽  
pp. 231-237 ◽  
Author(s):  
J. Takekawa ◽  
H. Mikada ◽  
T. Goto

Abstract. Recent researches have indicated coupling between volcanic eruptions and earthquakes. Some of them calculated static stress transfer in subsurface induced by the occurrences of earthquakes. Most of their analyses ignored the spatial heterogeneity in subsurface, or only took into account the rigidity layering in the crust. On the other hand, a smaller scale heterogeneity of around hundreds of meters has been suggested by geophysical investigations. It is difficult to reflect that kind of heterogeneity in analysis models because accurate distributions of fluctuation are not well understood in many cases. Thus, the effect of the ignorance of the smaller scale heterogeneity on evaluating the earthquake triggering of volcanic eruptions is also not well understood. In the present study, we investigate the influence of the assumption of homogeneity on evaluating earthquake triggering of volcanic eruptions using finite element simulations. The crust is treated as a stochastic media with different heterogeneous parameters (correlation length and magnitude of velocity perturbation) in our simulations. We adopt exponential and von Karman functions as spatial auto-correlation functions (ACF). In all our simulation results, the ignorance of the smaller scale heterogeneity leads to underestimation of the failure pressure around a chamber wall, which relates to dyke initiation. The magnitude of the velocity perturbation has a larger effect on the tensile failure at the chamber wall than the difference of the ACF and the correlation length. The maximum effect on the failure pressure in all our simulations is about twice larger than that in the homogeneous case. This indicates that the estimation of the earthquake triggering due to static stress transfer should take account of the heterogeneity of around hundreds of meters.


2006 ◽  
Vol 83 (1-3) ◽  
pp. 144-160 ◽  
Author(s):  
Randall W. Jibson ◽  
Edwin L. Harp ◽  
William Schulz ◽  
David K. Keefer

Sign in / Sign up

Export Citation Format

Share Document