rock avalanches
Recently Published Documents


TOTAL DOCUMENTS

214
(FIVE YEARS 46)

H-INDEX

36
(FIVE YEARS 3)

2022 ◽  
Vol 2022 ◽  
pp. 1-12
Author(s):  
Xinxin Zheng ◽  
Ruichen Chen ◽  
Jian Chen ◽  
Song Chen ◽  
Lulu Shi

To investigate the effects of internal shear fragmentation on dry granular flow, in this study a series of ring shear tests were performed on quartz sand samples under different normal stresses (100 kPa, 200 kPa, and 300 kPa), shear displacements (3 m, 5 m, 10m, 15 m, and 20 m), and shear rates (30 deg min−1, 60 deg min−1, and 90 deg min−1). Next, the grain-size distributions, fractal dimensions, and microcharacteristics of the quartz sand before and after the experiments were compared and analyzed. The study results show that grain breakage under shearing preferentially occurs at the edges of the particles and forms a bimodal distribution in frequency grain-size distribution curves, which is consistent with observations of rock avalanches. The fine particles prevent the coarse particles from breaking, in turn leading to the ultimate grain-size distribution and stable fractal dimension (2.61) of quartz sand at relatively small shear displacements compared with the travel distance of rock avalanches. The results of this study suggest that the fragmentation of rock avalanches during the shear spread stage may be far less significant than previously believed. Therefore, the fragmentation effect is not considered to be a major factor of the hypermobility in the late stage of rock avalanches.


Landslides ◽  
2022 ◽  
Author(s):  
Weile Li ◽  
Bo Zhao ◽  
Qiang Xu ◽  
Gianvito Scaringi ◽  
Huiyan Lu ◽  
...  

2022 ◽  
pp. 269-333
Author(s):  
P. Deline ◽  
K. Hewitt ◽  
D. Shugar ◽  
N. Reznichenko
Keyword(s):  

2021 ◽  
Vol 9 (3) ◽  
pp. 665-672
Author(s):  
Øystein T. Haug ◽  
Matthias Rosenau ◽  
Michael Rudolf ◽  
Karen Leever ◽  
Onno Oncken

Abstract. Rock avalanches produce exceptionally long run-outs that correlate with their rock volume. This relationship has been attributed to the size-dependent dynamic lowering of the effective basal friction. However, it has also been observed that run-outs of rock avalanches with similar volumes can span several orders of magnitude, suggesting additional controlling factors. Here, we analyse analogue models of rock avalanches, with the experiments designed to test the role of dynamic fragmentation. We show that for a fixed low basal friction, the run-out of experimental rock avalanches varies over 2 orders of magnitude and is determined by their degree of fragmentation, while the basal friction acts only as an upper limit on run-out. We interpret the run-out's dependence on fragmentation as being controlled by the competition between mobility enhancing spreading and energy-consuming fragmentation limited by basal friction. We formalize this competition into a scaling law based on energy conservation, which shows that the variation in the degree of fragmentation can contribute to the large variation in run-out of rock avalanches seen in nature.


Landslides ◽  
2021 ◽  
Author(s):  
B. Cagnoli

AbstractGranular flows of angular rock fragments such as rock avalanches and dense pyroclastic flows are simulated numerically by means of the discrete element method. Since large-scale flows generate stresses that are larger than those generated by small-scale flows, the purpose of these simulations is to understand the effect that the stress level has on flow mobility. The results show that granular flows that slide en mass have a flow mobility that is not influenced by the stress level. On the contrary, the stress level governs flow mobility when granular flow dynamics is affected by clast agitation and collisions. This second case occurs on a relatively rougher subsurface where an increase of the stress level causes an increase of flow mobility. The results show also that as the stress level increases, the effect that an increase of flow volume has on flow mobility switches sign from causing a decrease of mobility at low stress level to causing an increase of mobility at high stress level. This latter volume effect corresponds to the famous Heim’s mobility increase with the increase of the volume of large rock avalanches detected so far only in the field and for this reason considered inexplicable without resorting to extraordinary mechanisms. Granular flow dynamics is described in terms of dimensionless scaling parameters in three different granular flow regimes. This paper illustrates for each regime the functional relationship of flow mobility with stress level, flow volume, grain size, channel width, and basal friction.


2021 ◽  
Vol 15 (4) ◽  
pp. 1751-1785
Author(s):  
Andreas Kääb ◽  
Mylène Jacquemart ◽  
Adrien Gilbert ◽  
Silvan Leinss ◽  
Luc Girod ◽  
...  

Abstract. The detachment of large parts of low-angle mountain glaciers resulting in massive ice–rock avalanches have so far been believed to be a unique type of event, made known to the global scientific community first for the 2002 Kolka Glacier detachment, Caucasus Mountains, and then for the 2016 collapses of two glaciers in the Aru range, Tibet. Since 2016, several so-far unrecognized low-angle glacier detachments have been recognized and described, and new ones have occurred. In the current contribution, we compile, compare, and discuss 20 actual or suspected large-volume detachments of low-angle mountain glaciers at 10 different sites in the Caucasus, the Pamirs, Tibet, Altai, the North American Cordillera, and the Southern Andes. Many of the detachments reached volumes in the order of 10–100 million m3. The similarities and differences between the presented cases indicate that glacier detachments often involve a coincidental combination of factors related to the lowering of basal friction, high or increasing driving stresses, concentration of shear stress, or low resistance to exceed stability thresholds. Particularly soft glacier beds seem to be a common condition among the observed events as they offer smooth contact areas between the glacier and the underlying substrate and are prone to till-strength weakening and eventually basal failure under high pore-water pressure. Partially or fully thawed glacier bed conditions and the presence of liquid water could thus play an important role in the detachments. Surface slopes of the detached glaciers range between around 10∘ and 20∘. This may be low enough to enable the development of thick and thus large-volume glaciers while also being steep enough to allow critical driving stresses to build up. We construct a simple slab model to estimate ranges of glacier slope and width above which a glacier may be able to detach when extensively losing basal resistance. From this model we estimate that all the detachments described in this study occurred due to a basal shear stress reduction of more than 50 %. Most of the ice–rock avalanches resulting from the detachments in this study have a particularly low angle of reach, down to around 5∘, likely due to their high ice content and connected liquefaction potential, the availability of soft basal slurries, and large amounts of basal water, as well as the smooth topographic setting typical for glacial valleys. Low-angle glacier detachments combine elements and likely also physical processes of glacier surges and ice break-offs from steep glaciers. The surge-like temporal evolution ahead of several detachments and their geographic proximity to other surge-type glaciers indicate the glacier detachments investigated can be interpreted as endmembers of the continuum of surge-like glacier instabilities. Though rare, glacier detachments appear to be more frequent than commonly thought and disclose, despite local differences in conditions and precursory evolutions, the fundamental and critical potential of low-angle soft glacier beds to fail catastrophically.


Sign in / Sign up

Export Citation Format

Share Document