scholarly journals Dependence of plasmaspheric morphology on the electric field description during the recovery phase of the 17 April 2002 magnetic storm

Author(s):  
Michael W. Liemohn
1996 ◽  
Vol 14 (2) ◽  
pp. 211-221 ◽  
Author(s):  
A. V. Pavlov

Abstract. This study compares the measurements of electron density and temperature and the integral airglow intensity at 630 nm in the SAR arc region and slightly south of this (obtained by the Isis 2 spacecraft during the 18 December 1971 magnetic storm), with the model results obtained using the time dependent one-dimensional mathematical model of the Earth\\'s ionosphere and plasmasphere. The explicit expression in the third Enskog approximation for the electron thermal conductivity coefficient in the multicomponent mixture of ionized gases and a simplified calculation method for this coefficient presents an opportunity to calculate more exactly the electron temperature and density and 630 nm emission within SAR arc region are used in the model. Collisions between N2 and hot thermal electrons in the SAR arc region produce vibrationally excited nitrogen molecules. It appears that the loss rate of O+(4S) due to reactions with the vibrationally excited nitrogen is enough to explain electron density depression by a factor of two at F-region heights and the topside ionosphere density variations within the SAR arc if the erosion of plasma within geomagnetic field tubes, during the main phase of the geomagnetic storm and subsequent filling of geomagnetic tubes during the recovery phase, are considered. To explain the disagreement by a factor 1.5 between the observed and modeled SAR arc electron densities an additional plasma drift velocity ~–30 m s–1 in the ion continuity equations is needed during the recovery phase. This additional plasma drift velocity is likely caused by the transition from convecting to corotating flux tubes on the equatorward wall of the trough. The electron densities and temperatures and 630 nm integral intensity at the SAR arc and slightly south of this region as measured for the 18 December 1971 magnetic storm were correctly described by the model without perpendicular electric fields. Within this model framework the effect of the perpendicular electric field ~100 mv m–1 with a duration ~1 h on the SAR arc electron density profiles was found to be large. However, this effect is small if ~1–2 h have passed after the electric field was set equal to zero.


1996 ◽  
Vol 39 (4) ◽  
Author(s):  
I. Kutiev ◽  
T. Samardjiev ◽  
P. A. Bradley ◽  
M. I. Dick ◽  
L. R. Cander

The technique of using instantaneous maps for ionospheric storm studies is further developed. Integral parameters are introduced characterizing the main features of each map. These parameters are the net volumes of ?f0F2, ?M(3000)F2and their gradients. The magnetic storm 1-2 March, 1982 was considered and it was found that before the storm commencement and in recovery phase the Net Gradient (NG) is directed steadily to the East, while in the main phase it turns southward. NG shows where the changes of the F-layer come from. The net volume of ?f0F2 (NF) correlates well with Dst and AE indices.


2020 ◽  
Vol 60 (3) ◽  
pp. 301-310
Author(s):  
J. Manninen ◽  
N. G. Kleimenova ◽  
L. I. Gromova ◽  
Yu. V. Fedorenko ◽  
A. S. Nikitenko ◽  
...  

2015 ◽  
Vol 33 (8) ◽  
pp. 965-982 ◽  
Author(s):  
M. W. Liemohn ◽  
R. M. Katus ◽  
R. Ilie

Abstract. Currents from the Hot Electron and Ion Drift Integrator (HEIDI) inner magnetospheric model results for all of the 90 intense storms (disturbance storm-time (Dst) minimum < −100 nT) from solar cycle 23 (1996–2005) are calculated, presented, and analyzed. We have categorized these currents into the various systems that exist in near-Earth space, specifically the eastward and westward symmetric ring current, the partial ring current, the banana current, and the tail current. The current results from each run set are combined by a normalized superposed epoch analysis technique that scales the timeline of each phase of each storm before summing the results. It is found that there is a systematic ordering to the current systems, with the asymmetric current systems peaking during storm main phase (tail current rising first, then the banana current, followed by the partial ring current) and the symmetric current systems peaking during the early recovery phase (westward and eastward symmetric ring current having simultaneous maxima). The median and mean peak amplitudes for the current systems ranged from 1 to 3 MA, depending on the setup configuration used in HEIDI, except for the eastward symmetric ring current, for which the mean never exceeded 0.3 MA for any HEIDI setup. The self-consistent electric field description in HEIDI yielded larger tail and banana currents than the Volland–Stern electric field, while the partial and symmetric ring currents had similar peak values between the two applied electric field models.


Sign in / Sign up

Export Citation Format

Share Document