First-order reversal curve (FORC) diagrams of elongated single-domain grains at high and low temperatures

Author(s):  
C. Carvallo ◽  
Ö. Özdemir ◽  
D. J. Dunlop
Author(s):  
Jochen Rau

Even though the general framework of statistical mechanics is ultimately targeted at the description of macroscopic systems, it is illustrative to apply it first to some simple systems: a harmonic oscillator, a rotor, and a spin in a magnetic field. These applications serve to illustrate how a key function associated with the Gibbs state, the so-called partition function, is calculated in practice, how the entropy function is obtained via a Legendre transformation, and how such systems behave in the limits of high and low temperatures. After discussing these simple systems, this chapter considers a first example where multiple constituents are assembled into a macroscopic system: a basic model of a paramagnetic salt. It also investigates the size of energy fluctuations and how—in the case of the paramagnet—these fluctuations scale with the number of constituents.


2018 ◽  
Vol 171 ◽  
pp. 13001
Author(s):  
Alexander Botvina ◽  
Marcus Bleicher

The study of hypernuclei in relativistic ion collisions open new opportunities for nuclear and particle physics. The main processes leading to the production of hypernuclei in these reactions are the disintegration of large excited hyper-residues (target- and projectile-like), and the coalescence of hyperons with other baryons into light clusters. We use the transport, coalescence and statistical models to describe the whole reaction, and demonstrate the effectiveness of this approach: These reactions lead to the abundant production of multi-strange nuclei and new hypernuclear states. A broad distribution of predicted hypernuclei in masses and isospin allows for investigating properties of exotic hypernuclei, as well as the hypermatter both at high and low temperatures. There is a saturation of the hypernuclei production at high energies, therefore, the optimal way to pursue this experimental research is to use the accelerator facilities of intermediate energies, like FAIR (Darmstadt) and NICA (Dubna).


2016 ◽  
Vol 30 (04) ◽  
pp. 1650022 ◽  
Author(s):  
Zeshun Chen ◽  
Changming Xiao ◽  
Zhen Yao

Supposing the Ising model system is placed in a temperature field with constant high and low temperatures on both sides, then the system will shift to a non-equilibrium steady state with a certain temperature gradient. With the assistance of local temperature, the steady state of two-dimensional Ising model is studied via the avenue of Monte Carlo simulations in this paper. It is found that the local energy and magnetization are continuous, but there is a sharp decline in the magnetization strength when the temperature falls into the range of 2.2–2.4. The local magnetization [Formula: see text], when the temperature [Formula: see text]. It is the indication that the system is in the ferromagnetic state. However, when [Formula: see text], [Formula: see text], and then the ferromagnetic state turns into the paramagnetic state. Furthermore, a completely new and special state of Ising model system and the corresponding material is possible if the high and low temperatures of the temperature field are larger and smaller than the critical value of the system, respectively. According to this material, the magnetic driving machine, from which a new energy source can be obtained, is qualitatively discussed at the end of this paper.


2021 ◽  
Vol 887 ◽  
pp. 651-656
Author(s):  
Marina V. Polonik

On the basis of previously accumulated irreversible deformations, and, consequently, residual stresses, the process of removing residual stresses in metal workpieces under the action of low and high temperatures is simulated. Boundary value problems are solved and here are described regularities that are responsible for removing residual stresses for processing modes: high-temperature heating - cooling, high-temperature heating - holding - cooling, low-temperature heating - holding - cooling. The holding stage is modeled, taking into account the creep properties of materials under Norton creep conditions. According to the dependences of the obtained exact solutions, it is shown that it is the holding process that leads to the relaxation of residual stresses.


Sign in / Sign up

Export Citation Format

Share Document