Summer temperature and summer monsoon history on the Tibetan plateau during the last 400 years recorded by tree rings

2004 ◽  
Vol 31 (24) ◽  
Author(s):  
Achim Bräuning
2009 ◽  
Vol 6 (6) ◽  
pp. 10849-10881
Author(s):  
J. Hong ◽  
J. Kim

Abstract. The Tibetan Plateau is a critical region in the research of biosphere-atmosphere interactions on both regional and global scales due to its relation to Asian summer monsoon and El Niño. The unique environment on the Plateau provides valuable information for the evaluation of the models' surface energy partitioning associated with the summer monsoon. In this study, we investigated the surface energy partitioning on this important area through comparative analysis of two biosphere models constrained by the in-situ observation data. Indeed, the characteristics of the Plateau provide a unique opportunity to clarify the structural deficiencies of biosphere models as well as new insight into the surface energy partitioning on the Plateau. Our analysis showed that the observed inconsistency between the two biosphere models was mainly related to: 1) the parameterization for soil evaporation; 2) the way to deal with roughness lengths of momentum and scalars; and 3) the parameterization of subgrid velocity scale for aerodynamic conductance. Our study demonstrates that one should carefully interpret the modeling results on the Plateau especially during the pre-monsoon period.


2013 ◽  
Vol 26 (19) ◽  
pp. 7747-7766 ◽  
Author(s):  
Anmin Duan ◽  
Jun Hu ◽  
Zhixiang Xiao

Abstract Temporal variability within the Tibetan Plateau summer monsoon (TPSM) is closely linked to both the East and South Asian summer monsoons over several time scales but has received much less attention than these other systems. In this study, extensive integrations under phase 5 of the Coupled Model Intercomparison Project (CMIP5) historical scenarios from 15 coupled general circulation models (CGCMs) and Atmospheric Model Intercomparison Project (AMIP) runs from eight atmospheric general circulation models (AGCMs) are used to evaluate the performance of these GCMs. Results indicate that all GCMs are able to simulate the climate mean TPSM circulation system. However, the large bias associated with precipitation intensity and patterns remains, despite the higher resolution and inclusion of the indirect effects of sulfate aerosol that have helped to improve the skill of the models to simulate the annual cycle of precipitation in both AGCMs and CGCMs. The interannual variability of the surface heat low and the Tibetan high in most of the AGCMs resembles the observation reasonably because of the prescribed forcing fields. However, only a few models were able to reproduce the observed seesaw pattern associated with the interannual variability of the TPSM and the East Asian summer monsoon (EASM). Regarding long-term trends, most models overestimated the amplitude of the tropospheric warming and the declining trend in the surface heat low between 1979 and 2005. In addition, the observed cooling trend in the upper troposphere and the decline of the Tibetan high were not reproduced by most models. Therefore, there is still significant scope for improving GCM simulations of regional climate change, especially in regions near extensive mountain ranges.


2020 ◽  
Vol 7 (3) ◽  
pp. 516-533 ◽  
Author(s):  
Jianchun Bian ◽  
Dan Li ◽  
Zhixuan Bai ◽  
Qian Li ◽  
Daren Lyu ◽  
...  

Abstract Due to its surrounding strong and deep Asian summer monsoon (ASM) circulation and active surface pollutant emissions, surface pollutants are transported to the stratosphere from the Tibetan Plateau region, which may have critical impacts on global climate through chemical, microphysical and radiative processes. This article reviews major recent advances in research regarding troposphere–stratosphere transport from the region of the Tibetan Plateau. Since the discovery of the total ozone valley over the Tibetan Plateau in summer from satellite observations in the early 1990s, new satellite-borne instruments have become operational and have provided significant new information on atmospheric composition. In addition, in situ measurements and model simulations are used to investigate deep convection and the ASM anticyclone, surface sources and pathways, atmospheric chemical transformations and the impact on global climate. Also challenges are discussed for further understanding critical questions on microphysics and microchemistry in clouds during the pathway to the global stratosphere over the Tibetan Plateau.


2020 ◽  
Vol 202 ◽  
pp. 103114 ◽  
Author(s):  
Jin-Feng Li ◽  
Gan Xie ◽  
Jian Yang ◽  
David K. Ferguson ◽  
Xiao-Dong Liu ◽  
...  

2019 ◽  
Vol 19 (2) ◽  
pp. 1373-1391 ◽  
Author(s):  
Huiming Lin ◽  
Yindong Tong ◽  
Xiufeng Yin ◽  
Qianggong Zhang ◽  
Hui Zhang ◽  
...  

Abstract. Located in the world's “third pole” and a remote region connecting the Indian plate and the Eurasian plate, Qomolangma National Nature Preserve (QNNP) is an ideal region to study the long-range transport of atmospheric pollutants. In this study, gaseous elemental mercury (GEM), gaseous oxidized mercury (GOM) and particle-bound mercury (PBM) were continuously measured during the Indian monsoon transition period in QNNP. A slight increase in the GEM concentration was observed from the period preceding the Indian summer monsoon (1.31±0.42 ng m−3) to the Indian summer monsoon period (1.44±0.36 ng m−3), while significant decreases were observed in the GOM and PBM concentrations, with concentrations decreasing from 35.2±18.6 to 19.3±10.9 pg m−3 (p < 0.001) for GOM and from 30.5±12.5 to 24.9±19.8 pg m−3 (p < 0.001) for PBM. A unique daily pattern was observed in QNNP with respect to the GEM concentration, with a peak value before sunrise and a low value at noon. Relative to the (low) GEM concentrations, GOM concentrations (with a mean value of 21.4±13.4 pg m−3, n=1239) in this region were relatively high compared with the measured values in some other regions of China. A cluster analysis indicated that the air masses transported to QNNP changed significantly at different stages of the monsoon, and the major potential mercury (Hg) sources shifted from northern India and western Nepal to eastern Nepal and Bangladesh. As there is a large area covered in glaciers in QNNP, local glacier winds could increase the transboundary transport of pollutants and transport polluted air masses to the Tibetan Plateau. The atmospheric Hg concentration in QNNP in the Indian summer monsoon period was influenced by transboundary Hg flows. This highlights the need for a more specific identification of Hg sources impacting QNNP and underscores the importance of international cooperation regarding global Hg controls.


2020 ◽  
Vol 11 (9) ◽  
pp. 1543-1551
Author(s):  
Jinqiang Zhang ◽  
Xiangao Xia ◽  
Hongrong Shi ◽  
Xuemei Zong ◽  
Jun Li

2003 ◽  
Vol 106-107 ◽  
pp. 79-88 ◽  
Author(s):  
Xiaomin Fang ◽  
Lianqing Lü ◽  
Joseph A. Mason ◽  
Shengli Yang ◽  
Zhisheng An ◽  
...  

2021 ◽  
Author(s):  
Qin Wen ◽  
Zixuan Han ◽  
Hajun Yang ◽  
Jianbo Cheng ◽  
Zhengyu Liu ◽  
...  

Abstract It has been well known that the uplift of the Tibetan Plateau (TP) can significantly enhance the Asian monsoon. Here, by comparing the sensitivity experiments with vs without the TP, we find that TP uplift can also increase the precipitation of North American Summer Monsoon (NASM), with atmosphere teleconnection accounting for 6% and oceanic dynamical process accounting for another 6%. Physically, TP uplift generates a stationary Rossby wave train traveling from Asian continent to the North Atlantic region, resulting in an anomalous high-pressure over tropical-subtropical North Atlantic. The anomalous subtropical high enhances the low level southerly winds, forcing an anomalous upward motion over North American monsoon (NAM) region and then an increased summer precipitation there. In addition, TP uplift enhances the Atlantic meridional overturning circulation, which reduces the meridional temperature gradient and leads to a northward shift of Hadley Cell over eastern Pacific-Atlantic section. The latter shifts the convection center northward to 10°N and further increases the NASM precipitation. The enhanced NASM precipitation can also be understood by the northward shift of Intertropical Convergence Zone. Our study implies that the changes of NAM climate can be affected by not only local process but also remote forcing, including the Asian highland.


Sign in / Sign up

Export Citation Format

Share Document