scholarly journals Parameter sensitivity studies for the ice flow of the Ross Ice Shelf, Antarctica

2005 ◽  
Vol 110 (F4) ◽  
pp. n/a-n/a ◽  
Author(s):  
A. Humbert ◽  
R. Greve ◽  
K. Hutter
Geophysics ◽  
2016 ◽  
Vol 81 (1) ◽  
pp. WA21-WA34 ◽  
Author(s):  
Steven A. Arcone ◽  
James H. Lever ◽  
Laura E. Ray ◽  
Benjamin S. Walker ◽  
Gordon Hamilton ◽  
...  

The crevassed firn of the McMurdo shear zone (SZ) within the Ross Ice Shelf may also contain crevasses deep within its meteoric and marine ice, but the surface crevassing prevents ordinary vehicle access to investigate its structure geophysically. We used a lightweight robotic vehicle to tow 200- and 400-MHz ground-penetrating radar antennas simultaneously along 100 parallel transects over a [Formula: see text] grid spanning the SZ width. Transects were generally orthogonal to the ice flow. Total firn and meteoric ice thickness was approximately 160 m. Firn crevasses profiled at 400 MHz were up to 16 m wide, under snow bridges up to 10 m thick, and with strikes near 35°–40° to the transect direction. From the top down, 200-MHz profiles revealed firn diffractions originating to a depth of approximately 40 m, no discernible structure within the meteoric ice, a discontinuous transitional horizon, and at least 20 m of stratified marine ice; 28–31 m of freeboard found more marine ice exists. Based on 10 consecutive transects covering approximately [Formula: see text], we preliminarily interpreted the transitional horizon to be a thin saline layer, and marine ice hyperbolic diffractions and reflections to be responses to localized fractures, and crevasses filled with unstratified marine ice, all at strikes from 27° to 50°. We preliminarily interpreted off-nadir, marine ice horizons to be responses to linear and folded faults, similar to some in firn. The coinciding and synchronously folded areas of fractured firn and marine ice suggested that the visibly unstructured meteoric ice beneath our grid was also fractured, but either never crevassed, crevassed and sutured without marine ice inclusions, or that any ice containing crevasses might have eroded before marine ice accretion. We will test these interpretations with analysis of all transects and by extending our grid and increasing our depth ranges.


1969 ◽  
Vol 8 (52) ◽  
pp. 67-90 ◽  
Author(s):  
Egon Dorrer ◽  
Walther Hofmann ◽  
Wilfried Seufert

By means of modern geodetic observation techniques the ice movement along an east-west and a north-south profile across the Ross Ice Shelf, Antarctica, was measured during the two Antarctic summers, 1962–63 and 1965–66. 103 markers were placed on the 910 km long traverse. Distances were measured by tellurometer, and traverse angles by a precision theodolite between all consecutive markers, normally 8 to 9 km apart. For this type of observation method, six men distributed into three groups of two men each were necessary.The main part of the paper deals with data processing and with the computation of the ice movement. As the ice moves, the geometrical configuration of the traverse changes during the epoch of observation. For this “reduction to epoch” problem two methods are described in detail: (1) time reduction of observations, and (2) time reduction of positions. Between the two field journeys, only linear ice movement can be assumed. It is possible, however, to determine acceleration and curvature of the ice flow at all traverse points where the traverse angles differ considerably from 180°.The result of all computations is the field of velocity vectors along the traverse. Obvious characteristics are the rapid increase of velocity between the McMurdo Ice Shelf and Ross Ice Shelf, the uniform and nearly parallel movement in the middle of the ice shelf (maximum velocity 935 m year−1), the decrease of velocity along the north-south profile, and the systematic increase of divergence of the flow lines towards the ice margins. Careful study of the velocity vector field shows some deviations from an entirely uniform distribution.


1991 ◽  
Vol 15 ◽  
pp. 132-138 ◽  
Author(s):  
G. Casassa ◽  
K.C. Jezek ◽  
J. Turner ◽  
I.M. Whillans

Analysis of AVHRR data collected during the summer and winter over the Ross Ice Shelf reveals complex patterns of curvilinear stripes. In particular, a large, looping pattern of stripes is observed west of Crary Ice Rise in an area where conventional glaciological data collected with surface and airborne methods have been interpreted to suggest uncomplicated flow. On the basis of previous work using radar data to study ice flow downstream of Crary Ice Rise, we conclude that the stripes represent relict flowlines. The mechanism that produces these stripes is unclear, but we hypothesize that they are associated with subtle topography. Based solely on the patterns of stripes and their location in the outflow of major ice streams, we propose that they are related to an ice raft torn from the grounded ice sheet about 400 km upstream from its present position.


1989 ◽  
Vol 12 ◽  
pp. 118-123
Author(s):  
G.J. Musil

Detailed analysis of radar images, obtained using a synthetic aperture radar technique, from the bottom surface of a floating ice sheet suggests the presence of linear, groove-type scarring. The dominant physical parameters, such as the orientation, depth, and periodicity of the underside scarring, are derived. Although these results relate to the bottom roughness of Bach Ice Shelf (Alexander Island), Antarctica, close to its line of grounding, they are comparable to those of the underside of Ross Ice Shelf. It therefore seems probable that the roughness parameters, measured on Ross Ice Shelf using standard radio-echo techniques, relate to linear grooves which were introduced in the region of ice grounding. Such scarring runs along the direction of ice flow and is thought to be a drawn-out imprint of the bedrock surface where the ice was last grounded.


1979 ◽  
Vol 24 (90) ◽  
pp. 63-75 ◽  
Author(s):  
K. E. Rose

AbstractExtensive radio echo-sounding has mapped the part of West Antarctica between Byrd Station, the Whitmore Mountains, the Transantarctic Mountains, and the Ross Ice Shelf. The ice sheet in this area is dominated by five major sub-parallel ice streams (A–E), which are up to 100 km wide and extend inland from the grounding line of the Ross Ice Shelf for about 400 km. Their positions have been determined by crevassing seen on radio echo-sounding records, trimetrogon photographs, and Landsat imagery. The ice streams are characterized by their flat transverse cross-sections, while the intervening ice sheet exhibits domes and ridges. Ice flow lines are defined from the ice-surface contour pattern and the trend of the ice streams. It is apparent from this work that the flow line passing through Byrd Station joins ice stream D.The bedrock of the area is relatively smooth near the Ross Ice Shelf, becoming rougher near Byrd Station and especially so near the Whitmore Mountains. Bedrock troughs, which control the positions of the ice streams, are believed to have a tectonic origin.In this paper the role of the ice streams in the glaciological regime of West Antarctica is investigated from radio-echo data and estimates of balance velocity, basal shear stress, and basal temperatures.


1979 ◽  
Vol 24 (90) ◽  
pp. 63-75 ◽  
Author(s):  
K. E. Rose

AbstractExtensive radio echo-sounding has mapped the part of West Antarctica between Byrd Station, the Whitmore Mountains, the Transantarctic Mountains, and the Ross Ice Shelf. The ice sheet in this area is dominated by five major sub-parallel ice streams (A–E), which are up to 100 km wide and extend inland from the grounding line of the Ross Ice Shelf for about 400 km. Their positions have been determined by crevassing seen on radio echo-sounding records, trimetrogon photographs, and Landsat imagery. The ice streams are characterized by their flat transverse cross-sections, while the intervening ice sheet exhibits domes and ridges. Ice flow lines are defined from the ice-surface contour pattern and the trend of the ice streams. It is apparent from this work that the flow line passing through Byrd Station joins ice stream D.The bedrock of the area is relatively smooth near the Ross Ice Shelf, becoming rougher near Byrd Station and especially so near the Whitmore Mountains. Bedrock troughs, which control the positions of the ice streams, are believed to have a tectonic origin.In this paper the role of the ice streams in the glaciological regime of West Antarctica is investigated from radio-echo data and estimates of balance velocity, basal shear stress, and basal temperatures.


1969 ◽  
Vol 8 (52) ◽  
pp. 67-90 ◽  
Author(s):  
Egon Dorrer ◽  
Walther Hofmann ◽  
Wilfried Seufert

By means of modern geodetic observation techniques the ice movement along an east-west and a north-south profile across the Ross Ice Shelf, Antarctica, was measured during the two Antarctic summers, 1962–63 and 1965–66. 103 markers were placed on the 910 km long traverse. Distances were measured by tellurometer, and traverse angles by a precision theodolite between all consecutive markers, normally 8 to 9 km apart. For this type of observation method, six men distributed into three groups of two men each were necessary.The main part of the paper deals with data processing and with the computation of the ice movement. As the ice moves, the geometrical configuration of the traverse changes during the epoch of observation. For this “reduction to epoch” problem two methods are described in detail: (1) time reduction of observations, and (2) time reduction of positions. Between the two field journeys, only linear ice movement can be assumed. It is possible, however, to determine acceleration and curvature of the ice flow at all traverse points where the traverse angles differ considerably from 180°.The result of all computations is the field of velocity vectors along the traverse. Obvious characteristics are the rapid increase of velocity between the McMurdo Ice Shelf and Ross Ice Shelf, the uniform and nearly parallel movement in the middle of the ice shelf (maximum velocity 935 m year−1), the decrease of velocity along the north-south profile, and the systematic increase of divergence of the flow lines towards the ice margins. Careful study of the velocity vector field shows some deviations from an entirely uniform distribution.


1991 ◽  
Vol 15 ◽  
pp. 132-138 ◽  
Author(s):  
G. Casassa ◽  
K.C. Jezek ◽  
J. Turner ◽  
I.M. Whillans

Analysis of AVHRR data collected during the summer and winter over the Ross Ice Shelf reveals complex patterns of curvilinear stripes. In particular, a large, looping pattern of stripes is observed west of Crary Ice Rise in an area where conventional glaciological data collected with surface and airborne methods have been interpreted to suggest uncomplicated flow. On the basis of previous work using radar data to study ice flow downstream of Crary Ice Rise, we conclude that the stripes represent relict flowlines. The mechanism that produces these stripes is unclear, but we hypothesize that they are associated with subtle topography. Based solely on the patterns of stripes and their location in the outflow of major ice streams, we propose that they are related to an ice raft torn from the grounded ice sheet about 400 km upstream from its present position.


Sign in / Sign up

Export Citation Format

Share Document