scholarly journals Constraints on Indian plate motion since 20 Ma from dense Russian magnetic data: Implications for Indian plate dynamics

2006 ◽  
Vol 7 (2) ◽  
pp. n/a-n/a ◽  
Author(s):  
S. Merkouriev ◽  
C. DeMets
2021 ◽  
Author(s):  
Abdul Qayyum ◽  
Nalan Lom ◽  
Eldert L Advokaat ◽  
Wim Spakman ◽  
Douwe J.J van Hinsbergen

<p>Much of our understanding of the dynamics of slab break-off and its geological signatures rely on numerical models with a simplified set-up, in which slab break-off follows arrival of a continent in a mantle-stationary trench, the subsequent arrest of plate convergence, and after a delay time of 10 Ma or more, slab break off under the influence of slab pull. However, geological reconstructions show that plate tectonic reality deviates from this setup: post-collisional convergence is common, trenches are generally not stationary relative to mantle, neither before nor after collision, and there are many examples in which the mantle structure below collision zones is characterized by more, or fewer slabs than collisions.</p><p>A key example of the former is the India-Asia collision zone, where the mantle below India hosts two major, despite the common view of a single collision. Kinematic reconstructions reveal that post-collisional convergence amounted 1000s of kms, and was associated with ~1000 km of trench/collision zone advance. Collision between India-Asia collision zone may provide a good case study to determine the result of post-collisional convergence and absolute lower and upper plate motion on mantle structure, and to evaluate to what extent commonly assumed diagnostic geological phenomena of slab break-off apply.</p><p>In addition to the previously identified major India, Himalaya, and Burma slabs, we here map smaller slabs below Afghanistan and the Himalaya that reveal the latest phases of break-off. We show that west-dipping and east-dipping slabs west and east of India, respectively, are dragged northward parallel to the slab, slabs subducting north of India are overturned, and that the shallowest slab fragments are found in the location where the horizontally underthrust Indian lithosphere below Tibet is narrowest. Our results confirm that northward Indian absolute plate motion continued during two episodes of break-off of large (>1000 km wide) slabs, and decoupling of several smaller fragments. These slabs are currently found south of the present day trench locations. The slabs are located even farther south (>1000 km) of the leading edge of the Indian continental lithosphere, currently underthrust below Tibet, from which the slabs detached, signalling ongoing absolute Indian plate motion. We conclude that the multiple slab break-off events in this setting of ongoing plate convergence and trench advance is better explained by shearing off of slabs from the downgoing plate, possibly at a depth corresponding to the base of the Indian continental lithosphere, are not (necessarily) related to the timing of collision. A recently proposed, detailed diachronous record of deformation, uplift, and oroclinal bending in the Himalaya that was liked to slab break-off fits well with our kinematically reconstructed timing of the last slab shear-off, and may provide an important reference geological record for this process. We find that the commonly applied conceptual geological signatures of slab break-off do not apply to the India-Asia collision zone, or to similar settings and histories such as the Arabia-Eurasia collision zone. Our study provides more realistic boundary conditions for future numerical models that aim to assess the dynamics of subduction termination and its geological signatures.</p>


1991 ◽  
Vol 191 (3-4) ◽  
pp. 189-198 ◽  
Author(s):  
Peter J. Treloar ◽  
Michael P. Coward

2021 ◽  
Author(s):  
Santanu Bose ◽  
Wouter P Schellart ◽  
Vincent Strak ◽  
João C. Duarte ◽  
Zhihao Chen

<p>The Himalaya and the Tibetan plateau, the highest mountain range on Earth, have been growing continuously for the last 55 Myrs since India collided with Eurasia. The forces driving this protracted mountain building process are still not fully understood, and continue to puzzle Earth Scientists. Although it is now well accepted that subduction zones are the main driver for plate motion, plate boundary migration, and mantle flow in the asthenosphere, their role in driving Indian indentation into the Asian landmass has never been tested with geodynamic models. This study uses four-dimensional geodynamic physical models to test the role of lateral subduction zones in driving the India-Asia collision. The objective of our study is to investigate if the slab pull force of the Sunda and Makran slabs have any role to play in the dynamics of the ongoing India-Asia convergence, particularly after the complete disappearance of the Tethyan slab, which was primarily steering the northward travel of the Indian plate since late Jurassic. To address this issue, we performed three experiments by varying the size and configuration of the subducting plate in the initial model setup.  Our experimental results show that active subduction of the Indo-Australian plate along the Sunda subduction zone is the main driver of the India-Asia convergence, Indian indentation, the growth of the Himalaya-Tibet mountains, and the eastward extrusion of southeast Asia. Our work further suggests that the protracted growth of collisional mountains on Earth requires nearby active subduction zones and, therefore, Himalayan-type orogens may have been rare in the Earth’s history.</p>


2011 ◽  
Vol 304 (3-4) ◽  
pp. 503-510 ◽  
Author(s):  
Giampiero Iaffaldano ◽  
Laurent Husson ◽  
Hans-Peter Bunge
Keyword(s):  

2020 ◽  
Vol 536 ◽  
pp. 116144 ◽  
Author(s):  
Shihu Li ◽  
Douwe J.J. van Hinsbergen ◽  
Yani Najman ◽  
Jing Liu-Zeng ◽  
Chenglong Deng ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Zhongju Wei ◽  
Fangfang Yu

The traditional method of studying plate motion still cannot be used to obtain plate motion trajectory quantitatively. In this paper, we proposed a new method to quantitative determine plate motion trajectory. Depending on the paleomagnetic data of lithosphere plate and the stereographic projection principle. We selected the Wulff net as the basic projection net, improved and transformed the traditional stereographic projection methods. Projecting the paleomagnetic data (magnetic declination, palaeolatitude and geomagnetic pole coordinate) of the lithosphere plate into the improved stereographic projection net, we can get the analysis results of lithosphere plate stereographic projection. In our study, we took the Indian plate as an example, projected the paleomagnetic data (from Cretaceous) into the stereographic projection net, got the analysis results of motion trajectory of the Indian plate from Cretaceous. This method can be applied to quantify lithospheric plate motion trajectory.


2020 ◽  
Vol 6 (19) ◽  
pp. eaaz8681 ◽  
Author(s):  
Adina E. Pusok ◽  
Dave R. Stegman

During the Cretaceous, the Indian plate moved towards Eurasia at the fastest rates ever recorded. The details of this journey are preserved in the Indian Ocean seafloor, which document two distinct pulses of fast motion, separated by a noticeable slowdown. The nature of this rapid acceleration, followed by a rapid slowdown and then succeeded by a second speedup, is puzzling to explain. Using an extensive observation dataset and numerical models of subduction, we show that the arrival of the Reunion mantle plume started a sequence of events that can explain this history of plate motion. The forces applied by the plume initiate an intra-oceanic subduction zone, which eventually adds enough additional force to drive the plates at the anomalously fast speeds. The two-stage closure of a double subduction system, including accretion of an island arc at 50 million years ago, may help reconcile geological evidence for a protracted India-Eurasia collision.


Sign in / Sign up

Export Citation Format

Share Document