scholarly journals Determination of the contribution of northern Africa dust source areas to PM10 concentrations over the central Iberian Peninsula using the Hybrid Single-Particle Lagrangian Integrated Trajectory model (HYSPLIT) model

Author(s):  
M. Escudero ◽  
A. Stein ◽  
R. R. Draxler ◽  
X. Querol ◽  
A. Alastuey ◽  
...  
2018 ◽  
Author(s):  
Carlos Rodriguez-Navarro ◽  
Fulvio di Lorenzo ◽  
Kerstin Elert

Abstract. The mineralogy and physicochemical features of Saharan dust particles help to identify source areas and determine their biogeochemical, radiative and health effects, but their characterization is challenging. Using a multianalytical approach, here we characterized with unprecedented level of detail the mineralogy and physicochemical properties of Saharan dust particles massively wet deposited (~ 18 g m−2) following an extreme red rain event triggered by a north African cyclone that affected the southern Iberian Peninsula during February 21–23, 2017. Abundant palygorskite and illite, and relatively high carbonate contents, well-known northern and north-western Saharan dust indicators, along with low chlorite content and significant amounts of smectites and kaolinite, whose abundance increases southwards in the western Sahara, complemented by satellite imagery and back/forward trajectories, show that the most probable dust source areas were (i) south/central Algeria, north Mali and northwest Niger, and (ii) north Algeria, south Tunisia and north-west Libia. Scanning and transmission electron microscopy analyses, including Z-contrast high angle annular dark field (HAADF) imaging and analytical electron microscopy (AEM) show that clay minerals include abundant structural Fe (57 % of the total Fe) and typically form nanogranular aggregates covered or interspersed with amorphous/poorly crystalline iron oxyhydroxide nanoparticles (ferrihydrite), which account for 28 % of the free Fe, the rest being goethite and hematite. These nanogranular aggregates tend to form rims lining large silicate and carbonate particles. Such internally mixed iron-containing phases are main contributors to the observed absorption of solar and thermal radiation, and along with the abundant coarse/giant particles (> 10 μm), strongly affect the dust direct radiative forcing. The lack of secondary sulfates in aggregates of unaltered calcite internally mixed with clays/iron-rich nanoparticles shows that iron-rich nanoparticles did not form via atmospheric (acid) processing but were already present in the dust source soils. Such iron-rich nanoparticles, in addition to iron-containing clay (nano)particles, are an important source for bioavailable (soluble) iron. The dust particles are a potential health hazard, specially the abundant and potentially carcinogenic iron-containing palygorskite fibers. Ultimately, we show that different source areas are activated over large desert extensions, and large quantities of complex dust mixtures are transported thousands of kilometers and wet-deposited during such extreme events, which thwart any other Saharan dust event affecting south-western Europe. The past, present, and future trends, as well as impacts, of such extreme events must be taken into account when evaluating and modeling the manifold effects of the desert dust cycle.


Jurnal Ecolab ◽  
2020 ◽  
Vol 14 (2) ◽  
pp. 147-156
Author(s):  
Asri Indrawati ◽  
◽  
Retno Puji Lestari ◽  
Aries Tanti

Konsentrasi amonium yang ada dalam air hujan dapat membentuk ion amonium yang berasal dari reaksi amonia dengan air hujan. Ion amonium memiliki faktor netralisasi terhadap nilai keasaman air hujan. Jika konsentrasinya cukup besar, deposisi amonium akan memberikan fenomena lingkungan yang beragam, seperti eutrofikasi dan pengasaman tanah. Tujuan dari penelitian ini adalah untuk melihat tren deposisi amonium secara temporal, baik bulanan, musiman maupun tahunan di Serpong dan Bandung. Data yang digunakan yaitu data rata-rata tertimbang konsentrasi ion amonium dalam air hujan tahun 2000–2018. Sampel air hujan dianalisis dengan menggunakan kromatografi ion untuk mengetahui besarnya konsentrasi ion amonium, dilanjutkan dengan perhitungan fluks deposisi amonium dan menjalankan model Hybrid Single Particle Lagrangian Integrated Trajectory Model (HYSPLIT) untuk mengetahui trayektori polutan amonia untuk Serpong dan Bandung. Hasil penelitian menunjukkan kenaikan konsentrasi ion amonium dari tahun 2000 – 2018 untuk Serpong sebesar 2,64%, dengan konsentrasi tertinggi pada tahun 2013 sebesar 83 µmol/L. Sedangkan untuk Bandung mengalami kenaikan yang signifikan sebesar 87,87% dengan konsentrasi terendah pada tahun 2010 sebesar 32 µmol/L. Karakteristik tren deposisi amonium bulanan menunjukkan kenaikan konsentrasi pada bulan Juli – Oktober. Pada musim penghujan, konsentrasi ion amonium lebih rendah bila dibandingkan dengan musim kemarau. Fluks deposisi amonium berfluktuasi setiap tahunnya dengan mengikuti pola curah hujan, dan mengalami kenaikan dari tahun 2000 – 2018 sebesar 35% untuk Serpong dan mencapai 272% untuk Bandung. HYSPLIT model menunjukkan trayektori polutan yang berasal dari wilayah Bali dan Nusa Tenggara untuk Serpong pada musim kemarau, sedangkan sumber polutan di Bandung, dapat berasal dari Australia. Pada musim penghujan, sumber polutan baik di Serpong maupun Bandung, berasal dari lautan.


Author(s):  
Isabel Abad-Álvaro ◽  
Diego Leite ◽  
Dorota Bartczak ◽  
Susana Cuello ◽  
Beatriz Gomez-Gomez ◽  
...  

Toxicological studies concerning nanomaterials in complex biological matrices usually require a carefully designed workflow that involves handling, transportation and preparation of a large number of samples without affecting the nanoparticle...


2021 ◽  
Author(s):  
Věra Kantorová ◽  
Martin Loula ◽  
Antonín Kaňa ◽  
Oto Mestek

2017 ◽  
Vol 17 (16) ◽  
pp. 10163-10193 ◽  
Author(s):  
Carmen A. Friese ◽  
Johannes A. van Hateren ◽  
Christoph Vogt ◽  
Gerhard Fischer ◽  
Jan-Berend W. Stuut

Abstract. Saharan dust has a crucial influence on the earth climate system and its emission, transport and deposition are intimately related to, e.g., wind speed, precipitation, temperature and vegetation cover. The alteration in the physical and chemical properties of Saharan dust due to environmental changes is often used to reconstruct the climate of the past. However, to better interpret possible climate changes the dust source regions need to be known. By analysing the mineralogical composition of transported or deposited dust, potential dust source areas can be inferred. Summer dust transport off northwest Africa occurs in the Saharan air layer (SAL). In continental dust source areas, dust is also transported in the SAL; however, the predominant dust input occurs from nearby dust sources with the low-level trade winds. Hence, the source regions and related mineralogical tracers differ with season and sampling location. To test this, dust collected in traps onshore and in oceanic sediment traps off Mauritania during 2013 to 2015 was analysed. Meteorological data, particle-size distributions, back-trajectory and mineralogical analyses were compared to derive the dust provenance and dispersal. For the onshore dust samples, the source regions varied according to the seasonal changes in trade-wind direction. Gibbsite and dolomite indicated a Western Saharan and local source during summer, while chlorite, serpentine and rutile indicated a source in Mauritania and Mali during winter. In contrast, for the samples that were collected offshore, dust sources varied according to the seasonal change in the dust transporting air layer. In summer, dust was transported in the SAL from Mauritania, Mali and Libya as indicated by ferroglaucophane and zeolite. In winter, dust was transported with the trades from Western Sahara as indicated by, e.g., fluellite.


Sign in / Sign up

Export Citation Format

Share Document