scholarly journals Identification of volcanic rootless cones, ice mounds, and impact craters on Earth and Mars: Using spatial distribution as a remote sensing tool

Author(s):  
B. C. Bruno ◽  
S. A. Fagents ◽  
C. W. Hamilton ◽  
D. M. Burr ◽  
S. M. Baloga
2021 ◽  
Author(s):  
Ilaria Clemenzi ◽  
David Gustafsson ◽  
Jie Zhang ◽  
Björn Norell ◽  
Wolf Marchand ◽  
...  

<p>Snow in the mountains is the result of the interplay between meteorological conditions, e.g., precipitation, wind and solar radiation, and landscape features, e.g., vegetation and topography. For this reason, it is highly variable in time and space. It represents an important water storage for several sectors of the society including tourism, ecology and hydropower. The estimation of the amount of snow stored in winter and available in the form of snowmelt runoff can be strategic for their sustainability. In the hydropower sector, for example, the occurrence of higher snow and snowmelt runoff volumes at the end of the spring and in the early summer compared to the estimated one can substantially impact reservoir regulation with energy and economical losses. An accurate estimation of the snow volumes and their spatial and temporal distribution is thus essential for spring flood runoff prediction. Despite the increasing effort in the development of new acquisition techniques, the availability of extensive and representative snow and density measurements for snow water equivalent estimations is still limited. Hydrological models in combination with data assimilation of ground or remote sensing observations is a way to overcome these limitations. However, the impact of using different types of snow observations on snowmelt runoff predictions is, little understood. In this study we investigated the potential of assimilating in situ and remote sensing snow observations to improve snow water equivalent estimates and snowmelt runoff predictions. We modelled the seasonal snow water equivalent distribution in the Lake Överuman catchment, Northern Sweden, which is used for hydropower production. Simulations were performed using the semi-distributed hydrological model HYPE for the snow seasons 2017-2020. For this purpose, a snowfall distribution model based on wind-shelter factors was included to represent snow spatial distribution within model units. The units consist of 2.5x2.5 km<sup>2</sup> grid cells, which were further divided into hydrological response units based on elevation, vegetation and aspect. The impact on the estimation of the total catchment mean snow water equivalent and snowmelt runoff volume were evaluated using for data assimilation, gpr-based snow water equivalent data acquired along survey lines in the catchment in the early spring of the four years, snow water equivalent data obtained by a machine learning algorithm and satellite-based fractional snow cover data. Results show that the wind-shelter based snow distribution model was able to represent a similar spatial distribution as the gpr survey lines, when assessed on the catchment level. Deviations in the model performance within and between specific gpr survey lines indicate issues with the spatial distribution of input precipitation, and/or need to include explicit representation of snow drift between model units. The explicit snow distribution model also improved runoff simulations, and the ability of the model to improve forecast through data assimilation.</p>


2019 ◽  
Vol 45 ◽  
pp. 686-692 ◽  
Author(s):  
Niloufar Shirani-bidabadi ◽  
Touraj Nasrabadi ◽  
Shahrzad Faryadi ◽  
Adnan Larijani ◽  
Majid Shadman Roodposhti

2020 ◽  
Vol 9 (2) ◽  
pp. 61
Author(s):  
Hongwei Zhao ◽  
Lin Yuan ◽  
Haoyu Zhao

Recently, with the rapid growth of the number of datasets with remote sensing images, it is urgent to propose an effective image retrieval method to manage and use such image data. In this paper, we propose a deep metric learning strategy based on Similarity Retention Loss (SRL) for content-based remote sensing image retrieval. We have improved the current metric learning methods from the following aspects—sample mining, network model structure and metric loss function. On the basis of redefining the hard samples and easy samples, we mine the positive and negative samples according to the size and spatial distribution of the dataset classes. At the same time, Similarity Retention Loss is proposed and the ratio of easy samples to hard samples in the class is used to assign dynamic weights to the hard samples selected in the experiment to learn the sample structure characteristics within the class. For negative samples, different weights are set based on the spatial distribution of the surrounding samples to maintain the consistency of similar structures among classes. Finally, we conduct a large number of comprehensive experiments on two remote sensing datasets with the fine-tuning network. The experiment results show that the method used in this paper achieves the state-of-the-art performance.


2020 ◽  
Vol 12 (5) ◽  
pp. 821 ◽  
Author(s):  
Shouyi Wang ◽  
Zhigang Xu ◽  
Chengming Zhang ◽  
Jinghan Zhang ◽  
Zhongshan Mu ◽  
...  

Improving the accuracy of edge pixel classification is crucial for extracting the winter wheat spatial distribution from remote sensing imagery using convolutional neural networks (CNNs). In this study, we proposed an approach using a partly connected conditional random field model (PCCRF) to refine the classification results of RefineNet, named RefineNet-PCCRF. First, we used an improved RefineNet model to initially segment remote sensing images, followed by obtaining the category probability vectors for each pixel and initial pixel-by-pixel classification result. Second, using manual labels as references, we performed a statistical analysis on the results to select pixels that required optimization. Third, based on prior knowledge, we redefined the pairwise potential energy, used a linear model to connect different levels of potential energies, and used only pixel pairs associated with the selected pixels to build the PCCRF. The trained PCCRF was then used to refine the initial pixel-by-pixel classification result. We used 37 Gaofen-2 images obtained from 2018 to 2019 of a representative Chinese winter wheat region (Tai’an City, China) to create the dataset, employed SegNet and RefineNet as the standard CNNs, and a fully connected conditional random field as the refinement methods to conduct comparison experiments. The RefineNet-PCCRF’s accuracy (94.51%), precision (92.39%), recall (90.98%), and F1-Score (91.68%) were clearly superior than the methods used for comparison. The results also show that the RefineNet-PCCRF improved the accuracy of large-scale winter wheat extraction results using remote sensing imagery.


Sign in / Sign up

Export Citation Format

Share Document