Supplementary material to "Mapping the spatial distribution of NO<sub>2</sub> with in situ and remote sensing instruments during the Munich NO<sub>2</sub> imaging campaign"

Author(s):  
Gerrit Kuhlmann ◽  
Ka Lok Chan ◽  
Sebastian Donner ◽  
Ying Zhu ◽  
Marc Schwaerzel ◽  
...  
2016 ◽  
Author(s):  
Sven Krautwurst ◽  
Konstantin Gerilowski ◽  
Haflidi H. Jonsson ◽  
David R. Thompson ◽  
Richard W. Kolyer ◽  
...  

2019 ◽  
Vol 10 (1) ◽  
pp. 23
Author(s):  
Deyong Sun ◽  
Zunbin Ling ◽  
Shengqiang Wang ◽  
Zhongfeng Qiu ◽  
Yu Huan ◽  
...  

The bulk refractive index (np) of suspended particles, an apparent measure of particulate refraction capability and yet an essential element of particulate compositions and optical properties, is a critical indicator that helps understand many biogeochemical processes and ecosystems in marine waters. Remote estimation of np remains a very challenging task. Here, a multiple-step hybrid model is developed to estimate the np in the Bohai Sea (BS) and Yellow Sea (YS) through obtaining two key intermediate parameters (i.e., particulate backscattering ratio, Bp, and particle size distribution (PSD) slope, j) from remote-sensing reflectance, Rrs(λ). The in situ observed datasets available to us were collected from four cruise surveys during a period from 2014 to 2017 in the BS and YS, covering beam attenuation (cp), scattering (bp), and backscattering (bbp) coefficients, total suspended matter (TSM) concentrations, and Rrs(λ). Based on those in situ observation data, two retrieval algorithms for TSM and bbp were firstly established from Rrs(λ), and then close empirical relationships between cp and bp with TSM could be constructed to determine the Bp and j parameters. The series of steps for the np estimation model proposed in this study can be summarized as follows: Rrs (λ) → TSM and bbp, TSM → bp → cp → j, bbp and bp → Bp, and j and Bp → np. This method shows a high degree of fit (R2 = 0.85) between the measured and modeled np by validation, with low predictive errors (such as a mean relative error, MRE, of 2.55%), while satellite-derived results also reveal good performance (R2 = 0.95, MRE = 2.32%). A spatial distribution pattern of np in January 2017 derived from GOCI (Geostationary Ocean Color Imager) data agrees well with those in situ observations. This also verifies the satisfactory performance of our developed np estimation model. Applying this model to GOCI data for one year (from December 2014 to November 2015), we document the np spatial distribution patterns at different time scales (such as monthly, seasonal, and annual scales) for the first time in the study areas. While the applicability of our developed method to other water areas is unknown, our findings in the current study demonstrate that the method presented here can serve as a proof-of-concept template to remotely estimate np in other coastal optically complex water bodies.


2021 ◽  
Author(s):  
Gerrit Kuhlmann ◽  
Ka Lok Chan ◽  
Sebastian Donner ◽  
Ying Zhu ◽  
Marc Schwaerzel ◽  
...  

Abstract. We present results from the Munich NO2 imaging campaign (MuNIC) where nitrogen dioxide (NO2) near-surface concentrations (NSC) and vertical column densities (VCD) were measured with stationary, mobile and airborne in situ and remote sensing instruments. The most intensive day of the campaign was 7 July 2016, when the NO2 VCD field was mapped with the Airborne Prism Experiment (APEX) imaging spectrometer. The spatial distribution of APEX VCDs was rather smooth with a horizontal gradient between lower values upwind and higher values downwind of the city center. The NO2 map had no pronounced source signatures except for the plumes of two combined heat and power plants (CHP). The APEX VCDs agree well with mobile MAX-DOAS observations from two vehicles conducted in the same afternoon (r = 0.55). In contrast to the VCDs, mobile NSC measurements revealed high spatial and temporal variability along the roads with highest values in congested areas and tunnels. The NOx emissions of the two CHP plants were estimated from the APEX observations using a mass-balance approach. The estimates are higher than reported emissions, but uncertainties are high because the campaign day was unstable and convective, resulting in low and highly variable wind speeds. The NOx emission estimates are consistent with CO2 emissions determined from two ground-based FTIR instruments operated near one CHP plant. We conclude that airborne imaging spectrometers are well suited to map the spatial distribution of NO2 VCDs over large areas. The emission plumes of point sources can be detected in the APEX observations, but accurate flow fields are essential to estimate emissions with sufficient accuracy. The application of airborne imaging spectrometers for studying NSCs, for example as input for epidemiological studies, is less straight forward and requires to account for the non-trivial relationship between VCDs and NSCs.


Author(s):  
Gary Bassell ◽  
Robert H. Singer

We have been investigating the spatial distribution of nucleic acids intracellularly using in situ hybridization. The use of non-isotopic nucleotide analogs incorporated into the DNA probe allows the detection of the probe at its site of hybridization within the cell. This approach therefore is compatible with the high resolution available by electron microscopy. Biotinated or digoxigenated probe can be detected by antibodies conjugated to colloidal gold. Because mRNA serves as a template for the probe fragments, the colloidal gold particles are detected as arrays which allow it to be unequivocally distinguished from background.


Sign in / Sign up

Export Citation Format

Share Document