scholarly journals A possible impact of the North Atlantic Oscillation on the east Asian summer monsoon precipitation

2006 ◽  
Vol 33 (21) ◽  
Author(s):  
Mi-Kyung Sung ◽  
Won-Tae Kwon ◽  
Hee-Jeong Baek ◽  
Kyung-On Boo ◽  
Gyu-Ho Lim ◽  
...  
2016 ◽  
Vol 55 (7) ◽  
pp. 1459-1476 ◽  
Author(s):  
Fei Zheng ◽  
Jianping Li ◽  
Yanjie Li ◽  
Sen Zhao ◽  
Difei Deng

AbstractThe dominant mode of atmospheric circulation over the North Atlantic region is the North Atlantic Oscillation (NAO). The boreal spring NAO may imprint its signal on contemporaneous sea surface temperature (SST), leading to a North Atlantic SST tripolar pattern (NAST). This pattern persists into the following summer and modulates the East Asian summer monsoon (EASM). Previous studies have shown that the summer NAST is caused mainly by the preceding spring NAO, whereas the contemporaneous summer NAO plays a secondary role. The results of this study illustrate that, even if the summer NAO plays a secondary role, it may also perturb summer SST anomalies caused by the spring NAO. There are two types of perturbation caused by the summer NAO. If the spring and summer NAO patterns have the same (opposite) polarities, the summer NAST tends to be enhanced (reduced) by the summer NAO, and the correlation between the spring NAO and EASM is usually stronger (weaker). In the former (latter) case, the spring-NAO-based prediction of the EASM tends to have better (limited) skill. These results indicate that it is important to consider the evolution of the NAO when forecasting the EASM, particular when there is a clear reversal in the polarity of the NAO, because it may impair the spring-NAO-based EASM prediction.


2016 ◽  
Vol 151 ◽  
pp. 88-99 ◽  
Author(s):  
Jiawei Fan ◽  
Jule Xiao ◽  
Ruilin Wen ◽  
Shengrui Zhang ◽  
Xu Wang ◽  
...  

2004 ◽  
Vol 17 (24) ◽  
pp. 4674-4691 ◽  
Author(s):  
Masahiro Watanabe

Abstract Anomalous atmospheric fields associated with the North Atlantic Oscillation (NAO) are analyzed on interannual and intraseasonal time scales in order to examine the extent to which the NAO is a regional phenomenon. Analyses on the interannual time scale reveal that the NAO signal is relatively confined to the Euro–Atlantic sector in December while it extends toward East Asia and the North Pacific in February. The difference is most clearly seen in the meridional wind anomaly, which shows a wave train along the Asian jet, collocated with an anomalous vorticity source near the jet entrance. Diagnoses using a linear barotropic model indicate that this wave train is interpreted as quasi-stationary Rossby waves trapped on the Asian jet waveguide, and effectively excited by the anomalous upper-level convergence over the Mediterranean Sea. It is found that, when the NAO accompanies the Mediterranean convergence (MC) anomaly, most frequently seen in February, the NAO indeed has a much wider horizontal structure than the classical picture, rather similar to the Arctic Oscillation. In such cases interannual variability of the NAO is tied to the East Asian climate variability such that the positive NAO tends to bring a surface warming over East Asia. Similar results are obtained from an analysis of individual NAO events based on low-pass-filtered daily fields, which additionally identified that the downstream extension occurs at the decay stage of the NAO event and the MC anomaly appears to be induced by the Ekman pumping associated with the NAO. The signal of the MC anomaly can be detected even at 5 days before the peak of the NAO, suggesting that the NAO influence to East Asia is predictable to some extent; therefore, monitoring the developing NAO event is useful to the medium-range weather forecast in East Asian countries.


2011 ◽  
Vol 116 (D13) ◽  
Author(s):  
Hans W. Linderholm ◽  
Tinghai Ou ◽  
Jee-Hoon Jeong ◽  
Chris K. Folland ◽  
Daoyi Gong ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document