scholarly journals Self-similar scaling of magnetic energy in the inertial range of solar wind turbulence

2006 ◽  
Vol 111 (A9) ◽  
Author(s):  
J. J. Podesta ◽  
D. A. Roberts ◽  
M. L. Goldstein
2007 ◽  
Vol 664 (1) ◽  
pp. 543-548 ◽  
Author(s):  
J. J. Podesta ◽  
D. A. Roberts ◽  
M. L. Goldstein

Author(s):  
M. L. Goldstein ◽  
R. T. Wicks ◽  
S. Perri ◽  
F. Sahraoui

Turbulence is ubiquitous in the solar wind. Turbulence causes kinetic and magnetic energy to cascade to small scales where they are eventually dissipated, adding heat to the plasma. The details of how this occurs are not well understood. This article reviews the evidence for turbulent dissipation and examines various diagnostics for identifying solar wind regions where dissipation is occurring. We also discuss how future missions will further enhance our understanding of the importance of turbulence to solar wind dynamics.


2020 ◽  
Author(s):  
Ying Wang ◽  
Jiansen He ◽  
Die Duan ◽  
Xingyu Zhu

<p>By analyzing the turbulent magnetic field data from PSP, we find that: the solar wind turbulence in the inner heliosphere close to the Sun has formed the transition from multifractal intermittency at MHD scales to monofractal intermittency at kinetic scales. The order-dependent scaling exponent of the multi-order structure function shows a concave profile indicating the multifractal property at MHD scales, while its counterpart at kinetic scales shows a linear trend suggesting the monofractal property. We also find that, the closer to the sun, the more obvious the concave profile of the scaling exponent in the inertial range, which indicates that the multifractal characteristic of the magnetic field turbulence intermittency is also more evident when getting closer to the Sun.</p><p>Based on the Castaing description of the probability distribution function(PDF) of the disturbance difference, the key parameters(μ & λ^2) of the Castaing function are estimated as a function of scale. We find that: (1) when close to the sun (R~0.17 AU), the break point of μ is about 0.2 second, and the peak point of λ^2 is about 0.6 second, the two of which are about three times different in scale; (2) when far from the sun (R~0.8 AU), the break point of μ is about 1 second and the peak point of λ^2 is about 3 seconds, the two of which are also about three times different in scale. We also point out that the profiles (including the break/peak position) of both the parameters (μ & λ^2) along with the scale together determine the profile (including the spectral breaks) of the power spectrum.</p><p>Following the PP98 model function of incompressible MHD turbulent cascade rate (εZ), we first compared the cascade rate εZ with εB=<δB^3>/τ at the distance close to the sun, we find that the two trends over scales are in good agreement with one another. We therefore suggest that, to some extent (e.g. in the inertial region), εB=<δB^3>/τ can be used as a proxy of the cascade rate εZ. For the first time, by statistical analysis, we obtained that εB satisfies the following relation with the scale and the heliocentric distance: εB=((τ/τ0)^α)((r/r0)^β). In the inertial range, α changes from about -0.5 to about 0.5 as r increases from 0.17 AU to 0.81 AU, and β is about 6.4; in the kenetic range, when r increases from 0.17 AU to 0.25 AU, α keeps at about 2, and β is about 12.8. The εB(τ,r) expression given in this work, is believed to help understanding the transport and cascade processes of solar wind turbulence in the inner heliosphere. </p><p>Corresponding author:<br>Jiansen HE, [email protected]</p><p>Acknowledgements:<br>We would like to thank the PSP team for providing the data of PSP to the public.</p>


2022 ◽  
Vol 924 (2) ◽  
pp. 92
Author(s):  
G. Q. Zhao ◽  
Y. Lin ◽  
X. Y. Wang ◽  
H. Q. Feng ◽  
D. J. Wu ◽  
...  

Abstract Based on the Parker Solar Probe mission, this paper presents the observations of two correlations in solar wind turbulence near the Sun for the first time, demonstrating the clear existence of the following two correlations. One is positive correlation between the proton temperature and turbulent magnetic energy density. The other is negative correlation between the spectral index and magnetic helicity. It is found that the former correlation has a maximum correlation coefficient (CC) at the wavenumber k ρ p ≃ 0.5 (ρ p being the proton thermal gyroradius), and the latter correlation has a maximum absolute value of CC at k ρ p ≃ 1.8. In addition, investigations based on 11 yr of Wind observations reveal that the dimensionless wavenumbers (k ρ p ) corresponding to the maximum (absolute) values of CC remain nearly the same for different data sets. These results tend to suggest that the two correlations enhanced near the proton gyroradius scale would be a common feature of solar wind turbulence.


2019 ◽  
Vol 883 (1) ◽  
pp. L9 ◽  
Author(s):  
Honghong Wu ◽  
Chuanyi Tu ◽  
Xin Wang ◽  
Jiansen He ◽  
Linghua Wang

2020 ◽  
Vol 900 (2) ◽  
pp. 92 ◽  
Author(s):  
Zackary B. Pine ◽  
Charles W. Smith ◽  
Sophia J. Hollick ◽  
Matthew R. Argall ◽  
Bernard J. Vasquez ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document