scholarly journals Maximum entropy production, cloud feedback, and climate change

2007 ◽  
Vol 34 (14) ◽  
Author(s):  
Garth W. Paltridge ◽  
Graham D. Farquhar ◽  
Matthias Cuntz
2019 ◽  
Author(s):  
Audrey Maheu ◽  
Islem Hajji ◽  
François Anctil ◽  
Daniel F. Nadeau ◽  
René Therrien

Abstract. Total terrestrial evaporation is a key process to understand the hydrological impacts of climate change given that warmer surface temperatures translate into an increase in the atmospheric evaporative demand. To simulate this flux, many hydrological models rely on the concept of potential evaporation (PET) although large differences have been observed in the response of PET models to climate change. The Maximum Entropy Production (MEP) model of land surface fluxes offers an alternative approach to simulate terrestrial evaporation in a simple and parsimonious way while fulfilling the physical constraint of energy budget closure and providing a distinct estimation of evaporation and transpiration. The objective of this work is to use the MEP model to integrate energy budget modeling within a hydrological model. We coupled the MEP model with HydroGeoSphere, an integrated surface and subsurface hydrologic model. As a proof-of-concept, we performed one-dimensional soil column simulations at three sites of the AmeriFlux network. The coupled HGS-MEP model produced realistic simulations of soil water content (RMSE between 0.03 and 0.05 m3 m−3, NSE between 0.30 and 0.92) and terrestrial evaporation (RMSE between 0.31 and 0.71 mm day−1, NSE between 0.65 and 0.88) under semiarid, Mediterranean and temperate climates. HGS-MEP outperformed the standalone HGS model where total terrestrial evaporation is derived from potential evaporation which we computed using the Penman-Monteith equation. This research demonstrated the potential of the MEP model to improve the simulation of total terrestrial evaporation in hydrological models, including for hydrological projections under climate change.


2019 ◽  
Vol 23 (9) ◽  
pp. 3843-3863
Author(s):  
Audrey Maheu ◽  
Islem Hajji ◽  
François Anctil ◽  
Daniel F. Nadeau ◽  
René Therrien

Abstract. Total terrestrial evaporation, also referred to as evapotranspiration, is a key process for understanding the hydrological impacts of climate change given that warmer surface temperatures translate into an increase in the atmospheric evaporative demand. To simulate this flux, many hydrological models rely on the concept of potential evaporation (PET), although large differences have been observed in the response of PET models to climate change. The maximum entropy production (MEP) model of land surface fluxes offers an alternative approach for simulating terrestrial evaporation in a simple way while fulfilling the physical constraint of energy budget closure and providing a distinct estimation of evaporation and transpiration. The objective of this work is to use the MEP model to integrate energy budget modelling within a hydrological model. We coupled the MEP model with HydroGeoSphere (HGS), an integrated surface and subsurface hydrologic model. As a proof of concept, we performed one-dimensional soil column simulations at three sites of the AmeriFlux network. The coupled model (HGS-MEP) produced realistic simulations of soil water content (root-mean-square error – RMSE – between 0.03 and 0.05 m3 m−3; NSE – Nash–Sutcliffe efficiency – between 0.30 and 0.92) and terrestrial evaporation (RMSE between 0.31 and 0.71 mm d−1; NSE between 0.65 and 0.88) under semi-arid, Mediterranean and temperate climates. At the daily timescale, HGS-MEP outperformed the stand-alone HGS model where total terrestrial evaporation is derived from potential evaporation, which we computed using the Penman–Monteith equation, although both models had comparable performance at the half-hourly timescale. This research demonstrated the potential of the MEP model to improve the simulation of total terrestrial evaporation in hydrological models, including for hydrological projections under climate change.


Author(s):  
Bruce E. Hobbs ◽  
Alison Ord

A model for the formation of granitoid systems is developed involving melt production spatially below a rising isotherm that defines melt initiation. Production of the melt volumes necessary to form granitoid complexes within 10 4 –10 7 years demands control of the isotherm velocity by melt advection. This velocity is one control on the melt flux generated spatially just above the melt isotherm, which is the control valve for the behaviour of the complete granitoid system. Melt transport occurs in conduits initiated as sheets or tubes comprising melt inclusions arising from Gurson–Tvergaard constitutive behaviour. Such conduits appear as leucosomes parallel to lineations and foliations, and ductile and brittle dykes. The melt flux generated at the melt isotherm controls the position of the melt solidus isotherm and hence the physical height of the Transport/Emplacement Zone. A conduit width-selection process, driven by changes in melt viscosity and constitutive behaviour, operates within the Transport Zone to progressively increase the width of apertures upwards. Melt can also be driven horizontally by gradients in topography; these horizontal fluxes can be similar in magnitude to vertical fluxes. Fluxes induced by deformation can compete with both buoyancy and topographic-driven flow over all length scales and results locally in transient ‘ponds’ of melt. Pluton emplacement is controlled by the transition in constitutive behaviour of the melt/magma from elastic–viscous at high temperatures to elastic–plastic–viscous approaching the melt solidus enabling finite thickness plutons to develop. The system involves coupled feedback processes that grow at the expense of heat supplied to the system and compete with melt advection. The result is that limits are placed on the size and time scale of the system. Optimal characteristics of the system coincide with a state of maximum entropy production rate.


Entropy ◽  
2010 ◽  
Vol 12 (3) ◽  
pp. 473-479 ◽  
Author(s):  
Paško Županović ◽  
Srećko Botrić ◽  
Davor Juretić ◽  
Domagoj Kuić

2019 ◽  
Author(s):  
Olanrewaju Abiodun ◽  
Okke Batelaan ◽  
Huade Guan ◽  
Jingfeng Wang

Abstract. The aim of this research is to develop evaporation and transpiration products for Australia based on the maximum entropy production model (MEP). We introduce a method into the MEP algorithm of estimating the required model parameters over the entire Australia through the use of pedotransfer function, soil properties and remotely sensed soil moisture data. Our algorithm calculates the evaporation and transpiration over Australia on daily timescales at the 5 km2 resolution for 2003–2013. The MEP evapotranspiration (ET) estimates are validated using observed ET data from 20 Eddy Covariance (EC) flux towers across 8 land cover types in Australia. We also compare the MEP ET at the EC flux towers with two other ET products over Australia; MOD16 and AWRA-L products. The MEP model outperforms the MOD16 and AWRA-L across the 20 EC flux sites, with average root mean square errors (RMSE), 8.21, 9.87 and 9.22 mm/8 days respectively. The average mean absolute error (MAE) for the MEP, MOD16 and AWRA-L are 6.21, 7.29 and 6.52 mm/8 days, the average correlations are 0.64, 0.57 and 0.61, respectively. The percentage Bias of the MEP ET was within 20 % of the observed ET at 12 of the 20 EC flux sites while the MOD16 and AWRA-L ET were within 20 % of the observed ET at 4 and 10 sites respectively. Our analysis shows that evaporation and transpiration contribute 38 % and 62 %, respectively, to the total ET across the study period which includes a significant part of the “millennium drought” period (2003–2009) in Australia. The data (Abiodun et al., 2019) is available at https://doi.org/10.25901/5ce795d313db8.


Sign in / Sign up

Export Citation Format

Share Document