Indian Ocean Rossby waves detected in HYCOM sea surface salinity

2008 ◽  
Vol 35 (3) ◽  
Author(s):  
David M. Heffner ◽  
Bulusu Subrahmanyam ◽  
Jay F. Shriver
2014 ◽  
Vol 11 (4) ◽  
pp. 719-722 ◽  
Author(s):  
Smitha Ratheesh ◽  
Rashmi Sharma ◽  
Rajesh Sikhakolli ◽  
Raj Kumar ◽  
Sujit Basu

2011 ◽  
Vol 38 (17) ◽  
pp. n/a-n/a ◽  
Author(s):  
Gary Grunseich ◽  
Bulusu Subrahmanyam ◽  
Anthony Arguez

2020 ◽  
Author(s):  
Dong-Jin Kang ◽  
Sang-Hwa Choi ◽  
Daeyeon Kim ◽  
Gyeong-Mok Lee

<p>Surface seawater carbon dioxide was observed from 3 °S to 27 °S along 67 °E of the Indian Ocean in April 2018 and 2019. Partial pressure of CO<sub>2</sub>(pCO<sub>2</sub>) in the surface seawater and the atmosphere were observed every two minutes using an underway CO2 measurement system (General Oceanics Model 8050) installed on R/V Isabu. Surface water temperature and salinity were measured as well. The pCO<sub>2</sub> was measured using Li-7000 NDIR. Standard gases were measured every 8 hours in five classes with concentrations of 0 µatm, 202 µatm, 350 µatm, 447 µatm, and 359.87 µatm. The fCO<sub>2</sub> of atmosphere remained nearly constant at 387 ± 2 µatm, but the surface seawater fCO<sub>2</sub> peaked at about 3 °S and tended to decrease toward the north and south. The distribution of fCO<sub>2</sub> in surface seawater according to latitude tends to be very similar to that of sea surface temperature. In order to investigate the factors that control the distribution of fCO<sub>2</sub> in surface seawater, we analyzed the sea surface temperature, sea surface salinity, and other factors. The effects of salinity are insignificant, and the surface fCO<sub>2</sub> distribution is mainly controlled by sea surface temperature and other factors that can be represented mainly by biological activity and mixing.</p>


2016 ◽  
Author(s):  
Imranali M. Momin ◽  
Ashis K. Mitra ◽  
D. K. Mahapatra ◽  
E. N. Rajagopal

2016 ◽  
Vol 47 (7-8) ◽  
pp. 2573-2585 ◽  
Author(s):  
Yuhong Zhang ◽  
Yan Du ◽  
Tangdong Qu

2014 ◽  
Vol 10 (1) ◽  
pp. 251-260 ◽  
Author(s):  
S. Kasper ◽  
M. T. J. van der Meer ◽  
A. Mets ◽  
R. Zahn ◽  
J. S. Sinninghe Damsté ◽  
...  

Abstract. At the southern tip of Africa, the Agulhas Current reflects back into the Indian Ocean causing so-called "Agulhas rings" to spin off and release relatively warm and saline water into the South Atlantic Ocean. Previous reconstructions of the dynamics of the Agulhas Current, based on paleo-sea surface temperature and sea surface salinity proxies, inferred that Agulhas leakage from the Indian Ocean to the South Atlantic was reduced during glacial stages as a consequence of shifted wind fields and a northwards migration of the subtropical front. Subsequently, this might have led to a buildup of warm saline water in the southern Indian Ocean. To investigate this latter hypothesis, we reconstructed sea surface salinity changes using alkenone δD, and paleo-sea surface temperature using TEXH86 and UK'37, from two sediment cores (MD02-2594, MD96-2080) located in the Agulhas leakage area during Termination I and II. Both UK'37 and TEXH86 temperature reconstructions indicate an abrupt warming during the glacial terminations, while a shift to more negative δDalkenone values of approximately 14‰ during glacial Termination I and II is also observed. Approximately half of the isotopic shift can be attributed to the change in global ice volume, while the residual isotopic shift is attributed to changes in salinity, suggesting relatively high salinities at the core sites during glacials, with subsequent freshening during glacial terminations. Approximate estimations suggest that δDalkenone represents a salinity change of ca. 1.7–1.9 during Termination I and Termination II. These estimations are in good agreement with the proposed changes in salinity derived from previously reported combined planktonic Foraminifera δ18O values and Mg/Ca-based temperature reconstructions. Our results confirm that the δD of alkenones is a potentially suitable tool to reconstruct salinity changes independent of planktonic Foraminifera δ18O.


2017 ◽  
Vol 31 (1) ◽  
pp. 283-296 ◽  
Author(s):  
Yuhong Zhang ◽  
Yan Du ◽  
Ming Feng

Abstract In this study, multiple time scale variability of the salinity dipole mode in the tropical Indian Ocean (S-IOD) is revealed based on the 57-yr Ocean Reanalysis System 4 (ORAS4) sea surface salinity (SSS) reanalysis product and associated observations. On the interannual time scale, S-IOD is highly correlated with strong Indian Ocean dipole (IOD) and ENSO variability, with ocean advection forced by wind anomalies along the equator and precipitation anomalies in the southeastern tropical Indian Ocean (IO) dominating the SSS variations in the northern and southern poles of the S-IOD, respectively. S-IOD variability is also associated with the decadal modulation of the Indo-Pacific Walker circulation, with a stronger signature at its southern pole. Decadal variations of the equatorial IO winds and precipitations in the central IO force zonal ocean advection anomalies that contribute to the SSS variability in the northern pole of S-IOD on the decadal time scale. Meanwhile, oceanic dynamics dominates the SSS variability in the southern pole of S-IOD off Western Australia. Anomalous ocean advection transports the fresher water from low latitudes to the region off Western Australia, with additional contributions from the Indonesian Throughflow. Furthermore, the southern pole of S-IOD is associated with the thermocline variability originated from the tropical northwestern Pacific through the waveguide in the Indonesian Seas, forced by decadal Pacific climate variability. A deepening (shoaling) thermocline strengthens (weakens) the southward advection of surface freshwater into the southern pole of S-IOD and contributes to the high (low) SSS signatures off Western Australia.


2009 ◽  
Vol 33 (2-3) ◽  
pp. 245-263 ◽  
Author(s):  
P. N. Vinayachandran ◽  
Ravi S. Nanjundiah

2013 ◽  
Vol 9 (3) ◽  
pp. 3209-3238 ◽  
Author(s):  
S. Kasper ◽  
M. T. J. van der Meer ◽  
A. Mets ◽  
R. Zahn ◽  
J. S. Sinninghe Damsté ◽  
...  

Abstract. At the southern tip of the African shelf, the Agulhas Current reflects back into the Indian Ocean causing so called "Agulhas rings" to spin off and release relatively warm and saline water into the South Atlantic Ocean. Previous reconstructions of the dynamics of the Agulhas current, based on paleo sea surface temperature and sea surface salinity proxies, inferred that Agulhas leakage from the Indian Ocean to the South Atlantic is reduced as a consequence of changes in wind fields related to a northwards migration of ice masses and the subtropical front during glacial stages. Subsequently, this might have led to a build-up of warm saline water in the southern Indian Ocean. To investigate this latter hypothesis, we reconstructed sea surface salinity changes using alkenone δ D, and paleo sea surface temperature using TEXH86 and UK'37, from two sediment cores (MD02-2594, MD96-2080) located in the Agulhas leakage area during Termination I and II. Both UK'37 and TEXH86 temperature reconstructions infer an abrupt warming during the glacial terminations, which is different from the gradual warming trend previously reconstructed based on Mg/Ca ratios of Globigerina bulloides. These differences in temperature reconstructions might be related to differences in the growth season or depth habitat between organisms. A shift to more negative δ Dalkenone values of approximately 14‰ during glacial Termination I and approximately 13‰ during Termination II is also observed. Approximately half of these shifts can be attributed to the change in global ice volume, while the residual isotopic shift is attributed to changes in salinity, suggesting relatively high salinities at the core sites during glacials, with subsequent freshening during glacial terminations. Approximate estimations suggest that δ Dalkenone represents a salinity change of ca. 1.7–2 during Termination I and ca. 1.5–1.7 during Termination II. These estimations are in good agreement with the proposed changes in salinity derived from previously reported combined planktonic foraminifera δ18O values and Mg/Ca-based temperature reconstructions. Our results show that the δ D of alkenones is a potentially suitable tool to reconstruct salinity changes independent of planktonic foraminifera δ18O.


2021 ◽  
pp. 1-56
Author(s):  
Saurabh Rathore ◽  
Nathaniel L. Bindoff ◽  
Caroline C. Ummenhofer ◽  
Helen E. Phillips ◽  
Ming Feng ◽  
...  

AbstractThis study uses sea surface salinity (SSS) as an additional precursor for improving the prediction of summer (December-February, DJF) rainfall over northeastern Australia. From a singular value decomposition between SSS of prior seasons and DJF rainfall, we note that SSS of the Indo-Pacific warm pool region [SSSP (150°E-165°W and 10°S-10°N), and SSSI (50°E-95°E and 10°S-10°N)] co-varies with Australian rainfall, particularly in the northeast region. Composite analysis based on high (low) SSS events in SSSP and SSSI region is performed to understand the physical links between the SSS and the atmospheric 31 moisture originating from the regions of anomalously high (low) SSS and precipitation over Australia. The composites show the signature of co-occurring La Niña and negative Indian Ocean dipole (co-occurring El Niño and positive Indian Ocean dipole) with anomalously wet (dry) conditions over Australia. During the high (low) SSS events of SSSP and SSSI regions, the convergence (divergence) of incoming moisture flux results in anomalously wet (dry) conditions over Australia with a positive (negative) soil moisture anomaly. We show from the random forest regression analysis that the local soil moisture, El Niño Southern Oscillation (ENSO) and SSSP are the most important precursors for the northeast Australian rainfall whereas, for the Brisbane region ENSO, SSSP and Indian Ocean Dipole (IOD) are the most important. The prediction of Australian rainfall using random forest regression shows an improvement by including SSS from the prior season. This evidence suggests that sustained observations of SSS can improve the monitoring of the Australian regional hydrological cycle.


Sign in / Sign up

Export Citation Format

Share Document