Indian Ocean sea surface salinity variations in a coupled model

2009 ◽  
Vol 33 (2-3) ◽  
pp. 245-263 ◽  
Author(s):  
P. N. Vinayachandran ◽  
Ravi S. Nanjundiah
2007 ◽  
Vol 20 (5) ◽  
pp. 871-890 ◽  
Author(s):  
Rashmi Sharma ◽  
Neeraj Agarwal ◽  
Sujit Basu ◽  
Vijay K. Agarwal

Abstract This study focuses on two major aspects: the impact of satellite forcings (winds and precipitation) on the simulations of a multilayer Indian Ocean (IO) model (IOM) and the analysis of the processes responsible for salinity variations in the Indian Ocean during dipole years (1994 and 1997). It is observed that the European Remote Sensing Satellite-2 (ERS-2) scatterometer wind-driven solutions describe the interannual variabilities of sea surface temperature (SST) more realistically than the National Centers for Environmental Prediction (NCEP) wind-driven solutions. The equatorial westward current jet [hereafter referred to as reverse Wyrtki jet (RWJ)] originating near the Sumatra coast in response to anomalous easterlies during fall of 1994 and 1997 is quite strong in the scatterometer-forced solutions. This RWJ is found to be weak in the NCEP solution. Two more experiments differing by their precipitation forcings [climatological and interannually varying Global Precipitation Climatology Project (GPCP) rainfall] are carried out. Model-simulated variables like SST, sea surface salinity (SSS), and mixed layer depth (MLD) have been compared with in situ observations to verify the performance of the model. The model suggests a dipolelike structure in surface salinity during late 1994 and 1997, with low salinity in the central equatorial Indian Ocean (EIO) and high salinity near the Sumatra coast. The low-salinity tongue is caused by the transport of fresh surface waters via RWJ, which is further strengthened by a southward branch (which is absent in normal years) coming from the Bay of Bengal. A major inference of the study is that the low-salinity tongue is caused mainly by advection, not by a direct effect of precipitation. On the contrary, the high salinity near the Sumatra coast is due to the strong upwelling caused by anomalous easterlies. Another inference made out of this study is that there is apparently a definite signature of the evolution of the dipole event in the MLD approximately 2 months prior to the peak occurring in SSS in the south EIO.


2014 ◽  
Vol 43 (11) ◽  
pp. 3105-3122 ◽  
Author(s):  
Henrick Berger ◽  
Anne Marie Treguier ◽  
Nicolas Perenne ◽  
Claude Talandier

2014 ◽  
Vol 11 (4) ◽  
pp. 719-722 ◽  
Author(s):  
Smitha Ratheesh ◽  
Rashmi Sharma ◽  
Rajesh Sikhakolli ◽  
Raj Kumar ◽  
Sujit Basu

2020 ◽  
Author(s):  
Dong-Jin Kang ◽  
Sang-Hwa Choi ◽  
Daeyeon Kim ◽  
Gyeong-Mok Lee

<p>Surface seawater carbon dioxide was observed from 3 °S to 27 °S along 67 °E of the Indian Ocean in April 2018 and 2019. Partial pressure of CO<sub>2</sub>(pCO<sub>2</sub>) in the surface seawater and the atmosphere were observed every two minutes using an underway CO2 measurement system (General Oceanics Model 8050) installed on R/V Isabu. Surface water temperature and salinity were measured as well. The pCO<sub>2</sub> was measured using Li-7000 NDIR. Standard gases were measured every 8 hours in five classes with concentrations of 0 µatm, 202 µatm, 350 µatm, 447 µatm, and 359.87 µatm. The fCO<sub>2</sub> of atmosphere remained nearly constant at 387 ± 2 µatm, but the surface seawater fCO<sub>2</sub> peaked at about 3 °S and tended to decrease toward the north and south. The distribution of fCO<sub>2</sub> in surface seawater according to latitude tends to be very similar to that of sea surface temperature. In order to investigate the factors that control the distribution of fCO<sub>2</sub> in surface seawater, we analyzed the sea surface temperature, sea surface salinity, and other factors. The effects of salinity are insignificant, and the surface fCO<sub>2</sub> distribution is mainly controlled by sea surface temperature and other factors that can be represented mainly by biological activity and mixing.</p>


2008 ◽  
Vol 35 (3) ◽  
Author(s):  
David M. Heffner ◽  
Bulusu Subrahmanyam ◽  
Jay F. Shriver

2016 ◽  
Vol 47 (7-8) ◽  
pp. 2573-2585 ◽  
Author(s):  
Yuhong Zhang ◽  
Yan Du ◽  
Tangdong Qu

2014 ◽  
Vol 10 (1) ◽  
pp. 251-260 ◽  
Author(s):  
S. Kasper ◽  
M. T. J. van der Meer ◽  
A. Mets ◽  
R. Zahn ◽  
J. S. Sinninghe Damsté ◽  
...  

Abstract. At the southern tip of Africa, the Agulhas Current reflects back into the Indian Ocean causing so-called "Agulhas rings" to spin off and release relatively warm and saline water into the South Atlantic Ocean. Previous reconstructions of the dynamics of the Agulhas Current, based on paleo-sea surface temperature and sea surface salinity proxies, inferred that Agulhas leakage from the Indian Ocean to the South Atlantic was reduced during glacial stages as a consequence of shifted wind fields and a northwards migration of the subtropical front. Subsequently, this might have led to a buildup of warm saline water in the southern Indian Ocean. To investigate this latter hypothesis, we reconstructed sea surface salinity changes using alkenone δD, and paleo-sea surface temperature using TEXH86 and UK'37, from two sediment cores (MD02-2594, MD96-2080) located in the Agulhas leakage area during Termination I and II. Both UK'37 and TEXH86 temperature reconstructions indicate an abrupt warming during the glacial terminations, while a shift to more negative δDalkenone values of approximately 14‰ during glacial Termination I and II is also observed. Approximately half of the isotopic shift can be attributed to the change in global ice volume, while the residual isotopic shift is attributed to changes in salinity, suggesting relatively high salinities at the core sites during glacials, with subsequent freshening during glacial terminations. Approximate estimations suggest that δDalkenone represents a salinity change of ca. 1.7–1.9 during Termination I and Termination II. These estimations are in good agreement with the proposed changes in salinity derived from previously reported combined planktonic Foraminifera δ18O values and Mg/Ca-based temperature reconstructions. Our results confirm that the δD of alkenones is a potentially suitable tool to reconstruct salinity changes independent of planktonic Foraminifera δ18O.


2017 ◽  
Vol 31 (1) ◽  
pp. 283-296 ◽  
Author(s):  
Yuhong Zhang ◽  
Yan Du ◽  
Ming Feng

Abstract In this study, multiple time scale variability of the salinity dipole mode in the tropical Indian Ocean (S-IOD) is revealed based on the 57-yr Ocean Reanalysis System 4 (ORAS4) sea surface salinity (SSS) reanalysis product and associated observations. On the interannual time scale, S-IOD is highly correlated with strong Indian Ocean dipole (IOD) and ENSO variability, with ocean advection forced by wind anomalies along the equator and precipitation anomalies in the southeastern tropical Indian Ocean (IO) dominating the SSS variations in the northern and southern poles of the S-IOD, respectively. S-IOD variability is also associated with the decadal modulation of the Indo-Pacific Walker circulation, with a stronger signature at its southern pole. Decadal variations of the equatorial IO winds and precipitations in the central IO force zonal ocean advection anomalies that contribute to the SSS variability in the northern pole of S-IOD on the decadal time scale. Meanwhile, oceanic dynamics dominates the SSS variability in the southern pole of S-IOD off Western Australia. Anomalous ocean advection transports the fresher water from low latitudes to the region off Western Australia, with additional contributions from the Indonesian Throughflow. Furthermore, the southern pole of S-IOD is associated with the thermocline variability originated from the tropical northwestern Pacific through the waveguide in the Indonesian Seas, forced by decadal Pacific climate variability. A deepening (shoaling) thermocline strengthens (weakens) the southward advection of surface freshwater into the southern pole of S-IOD and contributes to the high (low) SSS signatures off Western Australia.


Sign in / Sign up

Export Citation Format

Share Document