scholarly journals CALIPSO lidar observations of the optical properties of Saharan dust: A case study of long-range transport

Author(s):  
Zhaoyan Liu ◽  
Ali Omar ◽  
Mark Vaughan ◽  
Johnathan Hair ◽  
Chieko Kittaka ◽  
...  
2017 ◽  
Author(s):  
Franziska Rittmeister ◽  
Albert Ansmann ◽  
Ronny Engelmann ◽  
Annett Skupin ◽  
Holger Baars ◽  
...  

Abstract. Continuous vertically resolved monitoring of marine aerosol, Saharan dust, and marine/dust aerosol mixtures was performed with multiwavelength polarization/Raman lidar aboard the German research vessel R/V Meteor during a one-month transatlantic cruise from Guadeloupe to Cabo Verde over 4500 km (from 61.5° W to 2&deg W, mostly along 14.5° N) in April–May 2013, as part of SALTRACE (Saharan Aerosol Long-range Transport and Aerosol–Cloud Interaction Experiment). An overview of measured aerosol optical properties over the tropical Atlantic is given in terms of spectrally resolved particle backscatter and extinction coefficients, lidar ratio, and linear depolarization ratio. Height profiles from the marine boundary layer (MBL) up to the top of the Saharan Air Layer (SAL) are presented. MBL and SAL mean lidar ratios were around 20 and 40 sr. These values indicate clean marine conditions in the MBL and entrainment of marine particles into the lower part of the SAL. In the central and upper parts of the SAL, the lidar ratios were most frequently 50–60 sr and thus typical for Saharan dust. The MBL and SAL mean depolarization ratios were close to 0.05 and between 0.2–0.3, respectively, which reflects almost dust-free conditions in the MBL and the occurrence of a mixture of marine and dust particles in the SAL. The conceptual model, describing the long-range transport and removal processes of Saharan dust over the North Atlantic, is discussed and confronted with the lidar observations along the west-to-east track of the slowly moving research vessel. The role of turbulent downward mixing as an efficient dust removal process is illuminated. In a follow-up article (Rittmeister et al., 2017), the lidar observations of dust extinction coefficient and derived mass concentration profiles are compared with respective dust profiles simulated with three well-established European atmospheric aerosol and dust prediction models (MACC, NMMB/BSC-Dust, SKIRON).


2010 ◽  
Vol 10 (12) ◽  
pp. 5391-5408 ◽  
Author(s):  
J. Jung ◽  
Y. J. Kim ◽  
K. Y. Lee ◽  
M. G. -Cayetano ◽  
T. Batmunkh ◽  
...  

Abstract. As a part of the IGAC (International Global Atmospheric Chemistry) Mega-cities program, aerosol physical and optical properties were continuously measured from March 2007 to March 2008 at an urban site (37.57° N, 126.94° E) in Seoul, Korea. Spectral optical properties of long-range transported Asian dust and pollution aerosols have been investigated based on the year long measurement data. Optically measured black carbon/thermally measured elemental carbon (BC/EC) ratio showed clear monthly variation with high values in summer and low values in winter mainly due to the enhancement of light attenuation by the internal mixing of EC. Novel approach has been suggested to retrieve the spectral light absorption coefficient (babs) from Aethalometer raw data by using BC/EC ratio. Mass absorption efficiency, σabs (=babs/EC) at 550 nm was determined to be 9.0±1.3, 8.9±1.5, 9.5±2.0, and 10.3±1.7 m2 g−1 in spring, summer, fall, and winter, respectively with an annual mean of 9.4±1.8 m2 g−1. Threshold values to classify severe haze events were suggested in this study. Increasing trend of aerosol single scattering albedo (SSA) with wavelength was observed during Asian dust events while little spectral dependence of SSA was observed during long-range transport pollution (LTP) events. Satellite aerosol optical thickness (AOT) and Hysplit air mass backward trajectory analyses as well as chemical analysis were performed to characterize the dependence of spectral optical properties on aerosol type. Results from this study can provide useful information for studies on regional air quality and aerosol's effects on climate change.


2021 ◽  
Vol 21 (1) ◽  
pp. 357-392
Author(s):  
Igor B. Konovalov ◽  
Nikolai A. Golovushkin ◽  
Matthias Beekmann ◽  
Meinrat O. Andreae

Abstract. Long-range transport of biomass burning (BB) aerosol from regions affected by wildfires is known to have a significant impact on the radiative balance and air quality in receptor regions. However, the changes that occur in the optical properties of BB aerosol during long-range transport events are insufficiently understood, limiting the adequacy of representations of the aerosol processes in chemistry transport and climate models. Here we introduce a framework to infer and interpret changes in the optical properties of BB aerosol from satellite observations of multiple BB plumes. Our framework includes (1) a procedure for analysis of available satellite retrievals of the absorption and extinction aerosol optical depths (AAOD and AOD) and single-scattering albedo (SSA) as a function of the BB aerosol photochemical age and (2) a representation of the AAOD and AOD evolution with a chemistry transport model (CTM) involving a simplified volatility basis set (VBS) scheme with a few adjustable parameters. We apply this framework to analyze a large-scale outflow of BB smoke plumes from Siberia toward Europe that occurred in July 2016. We use AAOD and SSA data derived from OMI (Ozone Monitoring Instrument) satellite measurements in the near-UV range along with 550 nm AOD and carbon monoxide (CO) columns retrieved from MODIS (Moderate Resolution Imaging Spectroradiometer) and IASI (Infrared Atmospheric Sounding Interferometer) satellite observations, respectively, to infer changes in the optical properties of Siberian BB aerosol due to its atmospheric aging and to get insights into the processes underlying these changes. Using the satellite data in combination with simulated data from the CHIMERE CTM, we evaluate the enhancement ratios (EnRs) that allow isolating AAOD and AOD changes due to oxidation and gas–particle partitioning processes from those due to other processes, including transport, deposition, and wet scavenging. The behavior of EnRs for AAOD and AOD is then characterized using nonlinear trend analysis. It is found that the EnR for AOD strongly increases (by about a factor of 2) during the first 20–30 h of the analyzed evolution period, whereas the EnR for AAOD does not exhibit a statistically significant increase during this period. The increase in AOD is accompanied by a statistically significant enhancement of SSA. Further BB aerosol aging (up to several days) is associated with a strong decrease in EnRs for both AAOD and AOD. Our VBS simulations constrained by the observations are found to be more consistent with satellite observations of strongly aged BB plumes than “tracer” simulations in which atmospheric transformations of BB organic aerosol were disregarded. The simulation results indicate that the upward trends in EnR for AOD and in SSA are mainly due to atmospheric processing of secondary organic aerosol (SOA), leading to an increase in the mass scattering efficiency of BB aerosol. Evaporation and chemical fragmentation of the SOA species, part of which is assumed to be absorptive (to contain brown carbon), are identified as likely reasons for the subsequent decrease in the EnR for both AAOD and AOD. Hence, our analysis reveals that the long-range transport of smoke plumes from Siberian fires is associated with major changes in BB aerosol optical properties and chemical composition. Overall, this study demonstrates the feasibility of using available satellite observations for evaluating and improving representations in atmospheric models of the BB aerosol aging processes in different regions of the world at much larger temporal scales than those typically addressed in aerosol chamber experiments.


2015 ◽  
Vol 15 (22) ◽  
pp. 32323-32365 ◽  
Author(s):  
G. Ancellet ◽  
J. Pelon ◽  
J. Totems ◽  
P. Chazette ◽  
A. Bazureau ◽  
...  

Abstract. Long range transport of biomass burning (BB) aerosols between North America and the Mediterranean region took place in June 2013. A large number of ground based and airborne lidar measurements were deployed in the Western Mediterranean during the Chemistry-AeRosol Mediterranean EXperiment (ChArMEx) intensive observation period. A detailed analysis of the potential North American aerosol sources is conducted including the assessment of their transport to Europe using forward simulations of the FLEXPART Lagrangian particle dispersion model initialized using satellite observations by MODIS and CALIOP. The three dimensional structure of the aerosol distribution in the ChArMEx domain observed by the ground-based lidars (Menorca, Barcelona and Lampedusa), a Falcon-20 aircraft flight and three CALIOP tracks, agree very well with the model simulation of the three major sources considered in this work: Canadian and Colorado fires, a dust storm from Western US and the contribution of Saharan dust streamers advected from the North Atlantic trade wind region into the Westerlies region. Four aerosol types were identified using the optical properties of the observed aerosol layers (aerosol depolarization ratio, lidar ratio) and the transport model analysis of the contribution of each aerosol source: (I) pure BB layer, (II) weakly dusty BB, (III) significant mixture of BB and dust transported from the trade wind region (IV) the outflow of Saharan dust by the subtropical jet and not mixed with BB aerosol. The contribution of the Canadian fires is the major aerosol source during this episode while mixing of dust and BB is only significant at altitude above 5 km. The mixing corresponds to a 20–30 % dust contribution in the total aerosol backscatter. The comparison with the MODIS AOD horizontal distribution during this episode over the Western Mediterranean sea shows that the Canadian fires contribution were as large as the direct northward dust outflow from Sahara.


SOLA ◽  
2005 ◽  
Vol 1 ◽  
pp. 121-124 ◽  
Author(s):  
Chan Bong Park ◽  
Nobuo Sugimoto ◽  
Ichiro Matsui ◽  
Atsushi Shimizu ◽  
Boyan Tatarov ◽  
...  

1973 ◽  
Vol 101 (5) ◽  
pp. 404-411 ◽  
Author(s):  
FRANKLIN P. HALL ◽  
CLAUDE E. DUCHON ◽  
LAURENCE G. LEE ◽  
RICHARD R. HAGAN

1992 ◽  
Vol 19 (6) ◽  
pp. 581-584 ◽  
Author(s):  
B. A. Bodhaine ◽  
J. M. Harris ◽  
J. A. Ogren ◽  
D. J. Hofmann

Sign in / Sign up

Export Citation Format

Share Document