Efficient interpolation of high-frequency domain data by phase smoothing

Radio Science ◽  
2008 ◽  
Vol 43 (4) ◽  
pp. n/a-n/a
Author(s):  
Jie Yang ◽  
Mary C. Taylor ◽  
Yu Zhang ◽  
Tapan K. Sarkar

2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Dongju Chen ◽  
Shuai Zhou ◽  
Lihua Dong ◽  
Jinwei Fan

This paper presents a new identification method to identify the main errors of the machine tool in time-frequency domain. The low- and high-frequency signals of the workpiece surface are decomposed based on the Daubechies wavelet transform. With power spectral density analysis, the main features of the high-frequency signal corresponding to the imbalance of the spindle system are extracted from the surface topography of the workpiece in the frequency domain. With the cross-correlation analysis method, the relationship between the guideway error of the machine tool and the low-frequency signal of the surface topography is calculated in the time domain.



2021 ◽  
Vol 2010 (1) ◽  
pp. 012121
Author(s):  
Chuanyun Wang ◽  
Guowei Yang ◽  
Dongdong Sun ◽  
Jiankai Zuo ◽  
Ershen Wang


2021 ◽  
Vol 11 (17) ◽  
pp. 8236
Author(s):  
Le Zhang ◽  
Hongguang Ji ◽  
Liyuan Liu ◽  
Jiwei Zhao

To study the crack evolution law and failure precursory characteristics of deep granite rocks in the process of deformation and failure under high confining pressure, granite samples obtained from a depth of 1150 m are tested using a TAW-2000 triaxial hydraulic servo testing machine and a PCI-II acoustic emission monitoring system. Based on the stress–strain curve and IET function, the loading process of the sample is divided into five stages: crack closure, linear elastic deformation, microcrack generation and development, macroscopic fracture generation and energy surge, and post-peak failure. The evolution trend and fracture evolution law of the acoustic emission signal event interval function in different stages are analyzed. In particular, the signals with an amplitude greater than 85 dB, a peak frequency greater than 350 kHz, and a frequency centroid greater than 275 kHz are defined as the failure precursor signals before the rock reaches the peak stress. The defined precursor signal conditions agree well with the experimental results. The time–frequency analysis and wavelet packet decomposition of the precursor signal are performed on the extracted characteristic signal of the failure precursor. The results show that the time-domain signal is in the form of a continuous waveform, and the frequency-domain waveform has multi-peak coexistence that is mainly concentrated in the high-frequency region. The energy distribution obtained by the wavelet packet decomposition of the characteristic signal is verified with the frequency-domain waveform. The energy distribution of the signal is mainly concentrated in the 343.75–375 kHz frequency band, followed by the 281.25–312.5 kHz frequency band. The energy proportion of the high-frequency signal increases with the confining pressure.



1987 ◽  
Vol 77 (4) ◽  
pp. 1127-1146
Author(s):  
Giuseppe De Natale ◽  
Raul Madariaga ◽  
Roberto Scarpa ◽  
Aldo Zollo

Abstract Time and frequency domain analyses are applied to strong motion data recorded in Friuli, Italy, during 1976 to 1977. An inversion procedure to estimate spectral parameters (low frequency level, corner frequency, and high frequency decay) has been applied to displacement spectra using a simple earthquake source model with a single corner frequency. The data were digitized accelerograms from ENEA-ENEL portable and permanent networks. Instrument-corrected SH waves were selected from a set of 138 three-component, hand-digitized records and 28 automatically digitized records. Thirty-eight events with stations having 8 to 32 km epicentral distance were studied. Different stress drop estimates were performed showing high values (200 to 300 bars, on the average) with seismic moments ranging from 2.8 × 1022 to 8.0 × 1024 dyne-cm. The observation of systematic higher values of Brune stress drop (obtained from corner frequencies) with respect to other time and frequency domain estimates of stress release, and the evidence on time series of multiple rupture episodes suggest that the observed corner frequencies are most probably related to subevent ruptures rather than the overall fault size. Seven events recorded at more than one station show a good correlation between rms, Brune, and dynamic stress drops, and a constant scaling of this parameter as a function of the seismic moment. When single station events are also considered, a slight moment dependence of these three stress drop estimates is observed differently. This may be explained by an inadequacy of the ω−2 high-frequency decay of the source model or by high-frequency attenuation due to propagation effects. The high-frequency cutoff of acceleration spectra indicates the presence of an Fmax in the range of 5 to 14 Hz, except for the stations where local site effects produce spectral peaks.



2007 ◽  
Vol 71 ◽  
pp. 173-209 ◽  
Author(s):  
Gildas Kubicke ◽  
Christophe Bourlier ◽  
Joseph Saillard


Agriculture ◽  
2016 ◽  
Vol 6 (4) ◽  
pp. 60 ◽  
Author(s):  
Mathew Pelletier ◽  
Robert Schwartz ◽  
Greg Holt ◽  
John Wanjura ◽  
Timothy Green


Sign in / Sign up

Export Citation Format

Share Document