An Efficient 3D-to-2D Reduction Technique for Frequency-Domain Layered Finite Element Analysis of Large-Scale High-Frequency Integrated Circuits

Author(s):  
Feng Sheng ◽  
Sourav Chakravarty ◽  
Dan Jiao
Author(s):  
Kevin O’Shea

Abstract The use of finite element analysis (FEA) in high frequency (20–40 kHz), high power ultrasonics to date has been limited. Of paramount importance to the performance of ultrasonic tooling (horns) is the accurate identification of pertinent modeshapes and frequencies. Ideally, the ultrasonic horn will vibrate in a purely axial mode with a uniform amplitude of vibration. However, spurious resonances can couple with this fundamental resonance and alter the axial vibration. This effect becomes more pronounced for ultrasonic tools with larger cross-sections. The current study examines a 4.5″ × 6″ cross-section titanium horn which is designed to resonate axially at 20 kHz. Modeshapes and frequencies from 17–23 kHz are examined experimentally and using finite element analysis. The effect of design variables — slot length, slot width, and number of slots — on modeshapes and frequency spacing is shown. An optimum configuration based on the finite element results is prescribed. The computed results are compared with actual prototype data. Excellent correlation between analytical and experimental data is found.


2013 ◽  
Vol 7 (1) ◽  
pp. 170-178 ◽  
Author(s):  
Weijun Yang ◽  
Yongda Yang ◽  
Jihua Yin ◽  
Yushuang Ni

In order to study the basic mechanical property of cast-in-place stiffening-ribbed-hollow-pipe reinforced concrete girderless floor, and similarities and differences of the structural performance compared with traditional floor, we carried out the destructive stage loading test on the short-term load test of floor model with four clamped edges supported in large scale, and conducted the long-term static load test. Also, the thesis conducted finite element analysis in virtue of ANSYS software for solid slab floor, stiffening-ribbed-hollow-pipe floor and tubular floor. The experiment indicates that the developing process of cracks, distribution and failure mode in stiffening-ribbed-hollow-pipe floor are similar to that of solid girderless floor, and that this kind of floor has higher bearing capacity and better plastic deformation capacity. The finite element analysis manifests that, compared with solid slab floor, the deadweight of stiffening-ribbed-hollow-pipe floor decreases on greater level while deformation increases little, and that compared with tubular floor, this floor has higher rigidity. So stiffening-ribbed-hollow-pipe reinforced concrete girderless floor is particularly suitable for long-span and large-bay building structure.


Sign in / Sign up

Export Citation Format

Share Document