scholarly journals Use of POES SEM-2 observations to examine radiation belt dynamics and energetic electron precipitation into the atmosphere

2010 ◽  
Vol 115 (A4) ◽  
pp. n/a-n/a ◽  
Author(s):  
Craig J. Rodger ◽  
Mark A. Clilverd ◽  
Janet C. Green ◽  
Mai Mai Lam
2020 ◽  
Author(s):  
Eldho Midhun Babu ◽  
Hilde Nesse Tyssøy ◽  
Christine Smith-Johnsen ◽  
Ville Aleksi Maliniemi ◽  
Josephine Alessandra Salice ◽  
...  

<p>Energetic electron precipitation (EEP) from the plasma sheet and the radiation belts, can collide with gases in the atmosphere and deposit their energy. EEP increase the production of NOx and HOx, which will catalytically destroy stratospheric ozone, an important element of atmospheric dynamics. The particle precipitation also causes variation in the radiation belt population. Therefore, measurement of latitudinal extend of the precipitation boundaries is important in quantifying atmospheric effects of Sun-Earth interaction and threats to spacecrafts and astronauts in the Earth’s radiation belt. <br>This study uses measurements by MEPED detectors of six NOAA/POES and EUMETSAT/METOP satellites during the year 2010 to determine the latitudinal boundaries of EEP and its variability with geomagnetic activity and solar wind drivers. Variation of the boundaries with respect to different particle energies and magnetic local time is studied. The result will be a key element for constructing a model of EEP variability to be applied in atmosphere climate models.</p>


2021 ◽  
Author(s):  
Eldho Midhun Babu ◽  
Hilde Nesse Tyssøy ◽  
Christine Smith-Johnsen ◽  
Ville Maliniemi ◽  
Josephine Alessandra Salice ◽  
...  

<p>Energetic electron precipitation (EEP) from the plasma sheet and the radiation belts, can collide with gases in the atmosphere and deposit their energy. EEP increase the production of NOx and HOx, which will catalytically destroy stratospheric ozone, an important element of atmospheric dynamics. Therefore, measurement of latitudinal extent of the precipitation boundaries is important in quantifying atmospheric effects of Sun-Earth interaction and threats to spacecrafts and astronauts in the Earth's radiation belt.<br>This study uses measurements by MEPED detectors of six NOAA/POES and EUMETSAT/METOP satellites from 2004 to 2014 to determine the latitudinal boundaries of EEP and its variability with geomagnetic activity and solar wind drivers. Variation of the boundaries with respect to different particle energies and magnetic local time is studied. Regression analyses are applied to determine the best predictor variable based on solar wind parameters and geomagnetic indices. The result will be a key element for constructing a model of EEP variability to be applied in atmosphere climate models.</p>


2010 ◽  
Vol 115 (A12) ◽  
pp. n/a-n/a ◽  
Author(s):  
Mark A. Clilverd ◽  
Craig J. Rodger ◽  
Rory J. Gamble ◽  
Thomas Ulich ◽  
Tero Raita ◽  
...  

2011 ◽  
Vol 11 (7) ◽  
pp. 1901-1913 ◽  
Author(s):  
N. F. Sidiropoulos ◽  
G. Anagnostopoulos ◽  
V. Rigas

Abstract. We examined (peak-to-background flux ratio p/b > 20) energetic electron bursts in the presence of VLF activity, as observed from the DEMETER satellite at low altitudes (~700 km). Our statistical analysis of measurements during two 6-month periods suggests that: (a) the powerful transmitter NWC causes the strongest effects on the inner radiation belts in comparison with other ground-based VLF transmitters, (b) the NWC transmitter was responsible for only ~1.5 % of total electron bursts examined during the 6-month period (1 July 2008 to 31 December 2008), (c) VLF transmitter-related electron bursts are accompanied by the presence of a narrow band emission centered at the radiating frequency emission, whereas the earthquake-related electron bursts are accompanied by the presence of broadband emissions from a few kHz to >20 KHz, (d) daytime events are less preferable than nighttime events, but this asymmetry was found to be less evident when the powerful transmitter NWC was turned off and (d) seismic activity most probably dominated the electromagnetic interactions producing the electron precipitation at middle latitudes. The results of this study support the proposal that the detection of radiation belt electron precipitation, besides other kinds of studies, is a useful tool for earthquake prediction research.


1998 ◽  
Vol 16 (1) ◽  
pp. 25-33 ◽  
Author(s):  
E. E. Titova ◽  
T. A. Yahnina ◽  
A. G. Yahnin ◽  
B. B. Gvozdevsky ◽  
A. A. Lyubchich ◽  
...  

Abstract. Specific type of energetic electron precipitation accompanied by a sharp increase in trapped energetic electron flux are found in the data obtained from low-altitude NOAA satellites. These strongly localized variations of the trapped and precipitated energetic electron flux have been observed in the evening sector near the plasmapause during recovery phase of magnetic storms. Statistical characteristics of these structures as well as the results of comparison with proton precipitation are described. We demonstrate the spatial coincidence of localized electron precipitation with cold plasma gradient and whistler wave intensification measured on board the DE-1 and Aureol-3 satellites. A simultaneous localized sharp increase in both trapped and precipitating electron flux could be a result of significant pitch-angle isotropization of drifting electrons due to their interaction via cyclotron instability with the region of sharp increase in background plasma density.Key words. Ionosphere (particle precipitation; wave-particle interaction) Magnetospheric Physics (plasmasphere)


2020 ◽  
Vol 2020 (372) ◽  
pp. 29-40
Author(s):  
Takuya Miyashita ◽  
Hiroyo Ohya ◽  
Fuminori Tsuchiya ◽  
Asuka Hirai ◽  
Mitsunori Ozaki ◽  
...  

2012 ◽  
Vol 39 (21) ◽  
pp. n/a-n/a ◽  
Author(s):  
M. Daae ◽  
P. Espy ◽  
H. Nesse Tyssøy ◽  
D. Newnham ◽  
J. Stadsnes ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document