scholarly journals Bayesian event tree for long-term volcanic hazard assessment: Application to Teide-Pico Viejo stratovolcanoes, Tenerife, Canary Islands

Author(s):  
R. Sobradelo ◽  
J. Martí
2008 ◽  
Vol 178 (3) ◽  
pp. 543-552 ◽  
Author(s):  
J. Martí ◽  
W.P. Aspinall ◽  
R. Sobradelo ◽  
A. Felpeto ◽  
A. Geyer ◽  
...  

2014 ◽  
Vol 2 (2) ◽  
pp. 1799-1835 ◽  
Author(s):  
L. Becerril ◽  
S. Bartolini ◽  
R. Sobradelo ◽  
J. Martí ◽  
J. M. Morales ◽  
...  

Abstract. Long-term hazard assessment, one of the bastions of risk-mitigation programs, is required for territorial planning and for developing emergency plans. To ensure qualitative and representative results, long-term volcanic hazard assessment requires several sequential steps to be completed, which include the compilation of geological and volcanological information, the characterization of past eruptions, spatial and temporal probabilistic studies, and the simulation of different eruptive scenarios. Despite being a densely populated active volcanic region that receives millions of visitors per year, no systematic hazard assessment has ever been conducted in the Canary Islands. In this paper we focus our attention on El Hierro, the youngest of the Canary Islands and the most recently affected by an eruption. We analyze the past eruptive activity (how), the spatial probability (where) and the temporal probability (when) of an eruption on the island. By studying the past eruptive behavior of the island and assuming that future eruptive patterns will be similar, we aim to identify the most likely volcanic scenarios and corresponding hazards, which include lava flows, pyroclastic fallout and pyroclastic density currents (PDCs). Finally, we estimate their probability of occurrence. The end result is the first total qualitative volcanic hazard map of the island.


2017 ◽  
Author(s):  
Laura Becerril ◽  
Joan Martí ◽  
Stefania Bartolini ◽  
Adelina Geyer

Abstract. Conducting long-term hazard assessment in active volcanic areas is of primordial importance for land planning and to define emergency plans able to be applied in case of a crisis. Definition of scenario hazard maps helps to mitigate the consequences of future eruptions by anticipating to the events that may occur. Lanzarote is an active volcanic island that has hosted the largest (> 1.5 km3 DRE) and longest (6 years) eruption, the Timanfaya eruption, on the Canary Islands in historical times (last 600 years). This eruption brought severe economic losses and forced local people to migrate. In spite of all these facts, no comprehensive hazard assessment neither hazard maps have been developed for the island. In this work, we present an integrated long-term volcanic hazard evaluation using a systematic methodology that includes spatial analysis and simulations of the most probable expected eruptive scenarios.


2014 ◽  
Vol 14 (7) ◽  
pp. 1853-1870 ◽  
Author(s):  
L. Becerril ◽  
S. Bartolini ◽  
R. Sobradelo ◽  
J. Martí ◽  
J. M. Morales ◽  
...  

Abstract. Long-term hazard assessment, one of the bastions of risk-mitigation programs, is required for land-use planning and for developing emergency plans. To ensure quality and representative results, long-term volcanic hazard assessment requires several sequential steps to be completed, which include the compilation of geological and volcanological information, the characterisation of past eruptions, spatial and temporal probabilistic studies, and the simulation of different eruptive scenarios. Despite being a densely populated active volcanic region that receives millions of visitors per year, no systematic hazard assessment has ever been conducted on the Canary Islands. In this paper we focus our attention on El Hierro, the youngest of the Canary Islands and the most recently affected by an eruption. We analyse the past eruptive activity to determine the spatial and temporal probability, and likely style of a future eruption on the island, i.e. the where, when and how. By studying the past eruptive behaviour of the island and assuming that future eruptive patterns will be similar, we aim to identify the most likely volcanic scenarios and corresponding hazards, which include lava flows, pyroclastic fallout and pyroclastic density currents (PDCs). Finally, we estimate their probability of occurrence. The end result, through the combination of the most probable scenarios (lava flows, pyroclastic density currents and ashfall), is the first qualitative integrated volcanic hazard map of the island.


2021 ◽  
Author(s):  
Beatriz Martínez Montesinos ◽  
Manuel Titos ◽  
Laura Sandri ◽  
Sara Barsotti ◽  
Giovanni Macedonio ◽  
...  

<p>Campi Flegrei is an active volcano located in one of the most densely inhabited areas in Europe and under high-traffic air routes. There, the Vesuvius Observatory’s surveillance system, which continuously monitors volcanic seismicity, soil deformations and gas emissions, highlights some variations in the state of the volcanic activity. It is well known that fragmented magma injected into the atmosphere during an explosive volcanic eruption poses a threat to human lives and air-traffic. For this reason, powerful tools and computational resources to generate extensive and high-resolution hazard maps taking into account a wide spectrum of events, including those of low probability but high impact, are important to provide decision makers with quality information to develop short- and long- term emergency plans. To this end, in the framework of the Center of Excellence for Exascale in Solid Earth (ChEESE), we show the potential of HPC in Probabilistic Volcanic Hazard Assessment. On the one hand, using the ChEESE's flagship Fall3D numerical code and taking advance of the PRACE-awarded resources at CEA/TGCC-HPC facility in France, we perform thousands of simulations of tephra deposition and airborne ash concentration at different flight levels exploring the natural variability and uncertainty on the eruptive conditions on a 3D-grid covering a 2 km-resolution 2000 km x 2000 km computational domain. On the other hand, we create short- and long-term workflows, by updating current Bayesian-Event-Tree-Analysis-based prototype tools, to make them capable of analyze the large amount of information generated by the Fall3D simulations that finally gives rise to the hazard maps for Campi Flegrei.</p>


2010 ◽  
Vol 72 (6) ◽  
pp. 705-716 ◽  
Author(s):  
Warner Marzocchi ◽  
Laura Sandri ◽  
Jacopo Selva

Sign in / Sign up

Export Citation Format

Share Document