scholarly journals Martian water ice clouds: A view from Mars Global Surveyor Thermal Emission Spectrometer

2011 ◽  
Vol 116 (E4) ◽  
Author(s):  
A. Snyder Hale ◽  
L. K. Tamppari ◽  
D. S. Bass ◽  
M. D. Smith
2001 ◽  
Vol 106 (E6) ◽  
pp. 12325-12338 ◽  
Author(s):  
John C. Pearl ◽  
Michael D. Smith ◽  
Barney J. Conrath ◽  
Joshua L. Bandfield ◽  
Philip R. Christensen

2002 ◽  
Vol 12 ◽  
pp. 637
Author(s):  
Mark I. Richardson

AbstractData collected by the Viking mission to Mars resulted in a picture of the Martian climate which stood largely unmodified for over a decade. When a challenge did come in the mid-1990’s it resulted from ground-based and HST observations which suggested lower global-average temperatures and dust opacities, and more atmospheric water ice than inferred from Viking. These observations prompted suggestions of climate change orders of magnitude larger and faster than anything contemplated for the Earth. A combination of new data from the Mars Global Surveyor Thermal Emission Spectrometer (TES) and reanalysis of Viking-era data have resulted in a new picture of the Martian climate. It is now clear that no significant climate change has occurred and that the “cooler and cloudier” conditions observed in the 1990’s for northern summer applied equally well to the Viking era. TES observations have provided detailed information on the cycle of air temperature and water ice clouds which support and extend the ground-based and HST observations. The disagreement with Viking observations has been found to result from faults in the Viking Orbiter Infrared Thermal Mapper (IRTM) 15µm channel, the lack of analysis of IRTM data applicable to water ice, and the misinterpretation of Viking Lander opacity measurements. The TES observations provide a rich data base which is now allowing a new picture of the Martian climate to be constructed in which water vapour and water ice clouds may play a significant role in modulating the annual cycles of dust and air temperature.


2008 ◽  
Vol 35 (7) ◽  
pp. n/a-n/a ◽  
Author(s):  
R. John Wilson ◽  
Stephen R. Lewis ◽  
Luca Montabone ◽  
Michael D. Smith

2021 ◽  
Author(s):  
Alex Innanen ◽  
Brittney Cooper ◽  
Charissa Campbell ◽  
Scott Guzewich ◽  
Jacob Kloos ◽  
...  

<p>1. INTRODUCTION</p><p>The Mars Science Laboratory (MSL) is located in Gale Crater (4.5°S, 137.4°E), and has been performing cloud observations for the entirety of its mission, since its landing in 2012 [eg. 1,2,3]. One such observation is the Phase Function Sky Survey (PFSS), developed by Cooper et al [3] and instituted in Mars Year (MY) 34 to determine the scattering phase function of Martian water-ice clouds. The clouds of interest form during the Aphelion Cloud Belt (ACB) season (L<sub>s</sub>=50°-150°), a period of time during which there is an increase in the formation of water-ice clouds around the Martian equator [4]. The PFSS observation was also performed during the MY 35 ACB season and the current MY 36 ACB season.</p><p>Following the MY 34 ACB season, Mars experienced a global dust storm which lasted from L<sub>s</sub>~188° to L<sub>s</sub>~250° of that Mars year [5]. Global dust storms are planet-encircling storms which occur every few Mars years and can significantly impact the atmosphere leading to increased dust aerosol sizes [6], an increase in middle atmosphere water vapour [7], and the formation of unseasonal water-ice clouds [8]. While the decrease in visibility during the global dust storm itself made cloud observation difficult, comparing the scattering phase function prior to and following the global dust storm can help to understand the long-term impacts of global dust storms on water-ice clouds.</p><p>2. METHODS</p><p>The PFSS consists of 9 cloud movies of three frames each, taken using MSL’s navigation cameras, at a variety of pointings in order to observe a large range of scattering angles. The goal of the PFSS is to characterise the scattering properties of water-ice clouds and to determine ice crystal geometry.  In each movie, clouds are identified using mean frame subtraction, and the phase function is computed using the formula derived by Cooper et al [3]. An average phase function can then be computed for the entirety of the ACB season.</p><p><img src="https://contentmanager.copernicus.org/fileStorageProxy.php?f=gnp.eda718c85da062913791261/sdaolpUECMynit/1202CSPE&app=m&a=0&c=67584351a5c2fde95856e0760f04bbf3&ct=x&pn=gnp.elif&d=1" alt="Figure 1 – Temporal Distribution of Phase Function Sky Survey Observations for Mars Years 34 and 35" width="800" height="681"></p><p>Figure 1 shows the temporal distributions of PFSS observations taken during MYs 34 and 35. We aim to capture both morning and afternoon observations in order to study any diurnal variability in water-ice clouds.</p><p>3. RESULTS AND DISCUSSION</p><p>There were a total of 26 PFSS observations taken in MY 35 between L<sub>s</sub>~50°-160°, evenly distributed between AM and PM observations. Typically, times further from local noon (i.e. earlier in the morning or later in the afternoon) show stronger cloud features, and run less risk of being obscured by the presence of the sun. In all movies in which clouds are detected, a phase function can be calculated, and an average phase function determined for the whole ACB season.  </p><p>Future work will look at the water-ice cloud scattering properties for the MY 36 ACB season, allowing us to get more information about the interannual variability of the ACB and to further constrain the ice crystal habit. The PFSS observations will not only assist in our understanding of the long-term atmospheric impacts of global dust storms but also add to a more complete image of time-varying water-ice cloud properties.</p>


Icarus ◽  
2021 ◽  
pp. 114693
Author(s):  
David Hinson ◽  
Huiqun Wang ◽  
John Wilson ◽  
Aymeric Spiga

2009 ◽  
pp. 193-220 ◽  
Author(s):  
P. R. Christensen ◽  
J. L. Bandfield ◽  
A. D. Rogers ◽  
Glotch R. T. D. ◽  
V. E. Hamilton ◽  
...  

Author(s):  
Dina Prialnik

Cometary nuclei, as small, spinning, ice-rich objects revolving around the sun in eccentric orbits, are powered and activated by solar radiation. Far from the sun, most of the solar energy is reradiated as thermal emission, whereas close to the sun, it is absorbed by sublimation of ice. Only a small fraction of the solar energy is conducted into the nucleus interior. The rate of heat conduction determines how deep and how fast this energy is dissipated. The conductivity of cometary nuclei, which depends on their composition and porosity, is estimated based on vastly different models ranging from very simple to extremely complex. The characteristic response to heating is determined by the skin depth, the thermal inertia, and the thermal diffusion timescale, which depend on the comet’s structure and dynamics. Internal heat sources include the temperature-dependent crystallization of amorphous water ice, which becomes important at temperatures above about 130 K; occurs in spurts; and releases volatiles trapped in the ice. These, in turn, contribute to heat transfer by advection and by phase transitions. Radiogenic heating resulting from the decay of short-lived unstable nuclei such as 26Al heats the nucleus shortly after formation and may lead to compositional alterations. The thermal evolution of the nucleus is described by thermo-physical models that solve mass and energy conservation equations in various geometries, sometimes very complicated, taking into account self-heating. Solutions are compared with actual measurements from spacecraft, mainly during the Rosetta mission, to deduce the thermal properties of the nucleus and decipher its activity pattern.


2000 ◽  
Vol 105 (E4) ◽  
pp. 9509-9519 ◽  
Author(s):  
Barney J. Conrath ◽  
John C. Pearl ◽  
Michael D. Smith ◽  
William C. Maguire ◽  
Philip R. Christensen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document