scholarly journals Feasibility of soil moisture estimation using passive distributed temperature sensing

2010 ◽  
Vol 46 (3) ◽  
Author(s):  
S. C. Steele-Dunne ◽  
M. M. Rutten ◽  
D. M. Krzeminska ◽  
M. Hausner ◽  
S. W. Tyler ◽  
...  
2016 ◽  
Vol 52 (10) ◽  
pp. 7690-7710 ◽  
Author(s):  
Jianzhi Dong ◽  
Susan C. Steele-Dunne ◽  
Tyson E. Ochsner ◽  
Christine E. Hatch ◽  
Chadi Sayde ◽  
...  

2020 ◽  
Vol 261 ◽  
pp. 110232 ◽  
Author(s):  
Magdalena Lagos ◽  
José Luis Serna ◽  
José Francisco Muñoz ◽  
Francisco Suárez

Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3723
Author(s):  
Robert Wu ◽  
Pierrick Lamontagne-Hallé ◽  
Jeffrey M. McKenzie

Actively heated fiber-optic distributed temperature sensing (aFO-DTS) measures soil moisture content at sub-meter intervals across kilometres of fiber-optic cable. The technology has great potential for environmental monitoring but calibration at field scales with variable soil conditions is challenging. To better understand and quantify the errors associated with aFO-DTS soil moisture measurements, we use a parametric numerical modeling approach to evaluate different error factors for uniform soil. A thermo-hydrogeologic, unsaturated numerical model is used to simulate a 0.01 m by 0.01 m two-dimensional domain, including soil and a fiber-optic cable. Results from the model are compared to soil moisture values calculated using the commonly used Tcum calibration method for aFO-DTS. The model is found to have high accuracy between measured and observed saturations for static hydrologic conditions but shows discrepancies for more realistic settings with active recharge. We evaluate the performance of aFO-DTS soil moisture calculations for various scenarios, including varying recharge duration and heterogeneous soils. The aFO-DTS accuracy decreases as the variability in soil properties and intensity of recharge events increases. Further, we show that the burial of the fiber-optic cable within soil may adversely affect calculated results. The results demonstrate the need for careful selection of calibration data for this emerging method of measuring soil moisture content.


2018 ◽  
Vol 173 ◽  
pp. 239-251 ◽  
Author(s):  
Dingfeng Cao ◽  
Bin Shi ◽  
Steven P Loheide ◽  
Xulong Gong ◽  
Hong-Hu Zhu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document