MONITORING SOIL MOISTURE IN AN EXPERIMENTAL WASTE ROCK PILE USING ACTIVE FIBER OPTIC DISTRIBUTED TEMPERATURE SENSING

2017 ◽  
Author(s):  
Robert Wu ◽  
◽  
Jeffrey M. McKenzie ◽  
Vincent Martin ◽  
Bruno Bussière ◽  
...  
2016 ◽  
Author(s):  
Jeffrey M. McKenzie ◽  
◽  
Vincent Martin ◽  
Stefan Broda ◽  
Bruno Bussière ◽  
...  

Ground Water ◽  
2021 ◽  
Author(s):  
Robert Wu ◽  
Vincent Martin ◽  
Jeffrey M. McKenzie ◽  
Stefan Broda ◽  
Bruno Bussière ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3723
Author(s):  
Robert Wu ◽  
Pierrick Lamontagne-Hallé ◽  
Jeffrey M. McKenzie

Actively heated fiber-optic distributed temperature sensing (aFO-DTS) measures soil moisture content at sub-meter intervals across kilometres of fiber-optic cable. The technology has great potential for environmental monitoring but calibration at field scales with variable soil conditions is challenging. To better understand and quantify the errors associated with aFO-DTS soil moisture measurements, we use a parametric numerical modeling approach to evaluate different error factors for uniform soil. A thermo-hydrogeologic, unsaturated numerical model is used to simulate a 0.01 m by 0.01 m two-dimensional domain, including soil and a fiber-optic cable. Results from the model are compared to soil moisture values calculated using the commonly used Tcum calibration method for aFO-DTS. The model is found to have high accuracy between measured and observed saturations for static hydrologic conditions but shows discrepancies for more realistic settings with active recharge. We evaluate the performance of aFO-DTS soil moisture calculations for various scenarios, including varying recharge duration and heterogeneous soils. The aFO-DTS accuracy decreases as the variability in soil properties and intensity of recharge events increases. Further, we show that the burial of the fiber-optic cable within soil may adversely affect calculated results. The results demonstrate the need for careful selection of calibration data for this emerging method of measuring soil moisture content.


2021 ◽  
Vol 7 (20) ◽  
pp. eabe7136
Author(s):  
Robert Law ◽  
Poul Christoffersen ◽  
Bryn Hubbard ◽  
Samuel H. Doyle ◽  
Thomas R. Chudley ◽  
...  

Measurements of ice temperature provide crucial constraints on ice viscosity and the thermodynamic processes occurring within a glacier. However, such measurements are presently limited by a small number of relatively coarse-spatial-resolution borehole records, especially for ice sheets. Here, we advance our understanding of glacier thermodynamics with an exceptionally high-vertical-resolution (~0.65 m), distributed-fiber-optic temperature-sensing profile from a 1043-m borehole drilled to the base of Sermeq Kujalleq (Store Glacier), Greenland. We report substantial but isolated strain heating within interglacial-phase ice at 208 to 242 m depth together with strongly heterogeneous ice deformation in glacial-phase ice below 889 m. We also observe a high-strain interface between glacial- and interglacial-phase ice and a 73-m-thick temperate basal layer, interpreted as locally formed and important for the glacier’s fast motion. These findings demonstrate notable spatial heterogeneity, both vertically and at the catchment scale, in the conditions facilitating the fast motion of marine-terminating glaciers in Greenland.


2018 ◽  
Vol 17 (1) ◽  
pp. 180119 ◽  
Author(s):  
Bas Vriens ◽  
Mélanie St. Arnault ◽  
Laura Laurenzi ◽  
Leslie Smith ◽  
K. Ulrich Mayer ◽  
...  

Ground Water ◽  
2012 ◽  
Vol 51 (5) ◽  
pp. 670-678 ◽  
Author(s):  
Matthew W. Becker ◽  
Brian Bauer ◽  
Adam Hutchinson

2018 ◽  
Vol 150 ◽  
pp. 40-51 ◽  
Author(s):  
Christopher Power ◽  
Panagiotis Tsourlos ◽  
Murugan Ramasamy ◽  
Aristeidis Nivorlis ◽  
Martin Mkandawire

Sign in / Sign up

Export Citation Format

Share Document