scholarly journals Widespread influence of resuspended sediments on oceanic particulate organic carbon: Insights from radiocarbon and aluminum contents in sinking particles

2010 ◽  
Vol 24 (4) ◽  
pp. n/a-n/a ◽  
Author(s):  
Jeomshik Hwang ◽  
Ellen R. M. Druffel ◽  
Timothy I. Eglinton
2019 ◽  
Author(s):  
Michael Stukel ◽  
Thomas Kelly

Thorium-234 (234Th) is a powerful tracer of particle dynamics and the biological pump in the surface ocean; however, variability in carbon:thorium ratios of sinking particles adds substantial uncertainty to estimates of organic carbon export. We coupled a mechanistic thorium sorption and desorption model to a one-dimensional particle sinking model that uses realistic particle settling velocity spectra. The model generates estimates of 238U-234Th disequilibrium, particulate organic carbon concentration, and the C:234Th ratio of sinking particles, which are then compared to in situ measurements from quasi-Lagrangian studies conducted on six cruises in the California Current Ecosystem. Broad patterns observed in in situ measurements, including decreasing C:234Th ratios with depth and a strong correlation between sinking C:234Th and the ratio of vertically-integrated particulate organic carbon (POC) to vertically-integrated total water column 234Th, were accurately recovered by models assuming either a power law distribution of sinking speeds or a double log normal distribution of sinking speeds. Simulations suggested that the observed decrease in C:234Th with depth may be driven by preferential remineralization of carbon by particle-attached microbes. However, an alternate model structure featuring complete consumption and/or disaggregation of particles by mesozooplankton (e.g. no preferential remineralization of carbon) was also able to simulate decreasing C:234Th with depth (although the decrease was weaker), driven by 234Th adsorption onto slowly sinking particles. Model results also suggest that during bloom decays C:234Th ratios of sinking particles should be higher than expected (based on contemporaneous water column POC), because high settling velocities minimize carbon remineralization during sinking.


2021 ◽  
Author(s):  
Martí Galí ◽  
Marcus Falls ◽  
Hervé Claustre ◽  
Olivier Aumont ◽  
Raffaele Bernardello

Abstract. Oceanic particulate organic carbon (POC) is a relatively small (~4 Pg C) but dynamic component of the global carbon cycle with fast mean turnover rates compared to other oceanic, continental and atmospheric carbon stocks. Biogeochemical models historically focused on reproducing the sinking flux of POC driven by large fast-sinking particles (bPOC). However, suspended and slow-sinking particles (sPOC) typically represent 80–90 % of the POC stock, and can make important seasonal contributions to vertical fluxes through the mesopelagic layer (200–1000 m). Recent developments in the parameterization of POC reactivity in the PISCES model (PISCESv2_RC) have greatly improved its ability to capture sPOC dynamics. Here we evaluated this model by matching 3D and 1D simulations with BGC-Argo and satellite observations in globally representative ocean biomes, building on a refined scheme for converting particulate backscattering profiles measured by BGC-Argo floats to POC. We show that PISCES captures the major features of sPOC and bPOC as seen by BGC-Argo floats across a range of spatiotemporal scales, from highly resolved profile time series to biome-aggregated climatological profiles. Our results also illustrate how the comparison between the model and observations is hampered by (1) the uncertainties in empirical POC estimation, (2) the imperfect correspondence between modelled and observed variables, and (3) the bias between modelled and observed physics. Despite these limitations, we identified characteristic patterns of model-observations misfits in the mesopelagic layer of subpolar and subtropical gyres. These misfits likely result from both suboptimal model parameters and model equations themselves, pointing to the need to improve the model representation of processes with a critical influence on POC dynamics, such as sinking, remineralization, (dis)aggregation and zooplankton activity. Beyond model evaluation results, our analysis identified inconsistencies between current estimates of POC from satellite and BGC-Argo data, as well as POC partitioning into phytoplankton, heterotrophs and detritus deduced from in situ bio-optical data. Our approach can help constrain POC stocks, and ultimately budgets, in the epipelagic and mesopelagic ocean.


2019 ◽  
Author(s):  
Michael Stukel ◽  
Thomas Kelly

Thorium-234 (234Th) is a powerful tracer of particle dynamics and the biological pump in the surface ocean; however, variability in carbon:thorium ratios of sinking particles adds substantial uncertainty to estimates of organic carbon export. We coupled a mechanistic thorium sorption and desorption model to a one-dimensional particle sinking model that uses realistic particle settling velocity spectra. The model generates estimates of 238U-234Th disequilibrium, particulate organic carbon concentration, and the C:234Th ratio of sinking particles, which are then compared to in situ measurements from quasi-Lagrangian studies conducted on six cruises in the California Current Ecosystem. Broad patterns observed in in situ measurements, including decreasing C:234Th ratios with depth and a strong correlation between sinking C:234Th and the ratio of vertically-integrated particulate organic carbon (POC) to vertically-integrated total water column 234Th, were accurately recovered by models assuming either a power law distribution of sinking speeds or a double log normal distribution of sinking speeds. Simulations suggested that the observed decrease in C:234Th with depth may be driven by preferential remineralization of carbon by particle-attached microbes. However, an alternate model structure featuring complete consumption and/or disaggregation of particles by mesozooplankton (e.g. no preferential remineralization of carbon) was also able to simulate decreasing C:234Th with depth (although the decrease was weaker), driven by 234Th adsorption onto slowly sinking particles. Model results also suggest that during bloom decays C:234Th ratios of sinking particles should be higher than expected (based on contemporaneous water column POC), because high settling velocities minimize carbon remineralization during sinking.


Nature ◽  
1977 ◽  
Vol 266 (5604) ◽  
pp. 713-716 ◽  
Author(s):  
S. KRISHNASWAMI ◽  
D. LAL

Sign in / Sign up

Export Citation Format

Share Document