organic carbon pool
Recently Published Documents


TOTAL DOCUMENTS

105
(FIVE YEARS 27)

H-INDEX

21
(FIVE YEARS 3)

Forests ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 105
Author(s):  
Jianxiong Hu ◽  
Pei Sun Loh ◽  
Siriporn Pradit ◽  
Thi Phuong Quynh Le ◽  
Chantha Oeurng ◽  
...  

Mangroves are highly productive blue carbon ecosystems that preserve high organic carbon concentrations in soils. In this study, particle size, bulk elemental composition and stable carbon isotope were determined for the sediment cores collected from the landward and seaward sides of two mangrove forests of different ages (M1, ca. 60; M2, ca. 4 years old) to determine the effects of geomorphic setting and age (L1 = old mangrove and S1 = salt marsh stand in M1; L2 = young mangrove and S2 = bare mudflat in M2) on sediments and organic carbon accumulation. The objective of this study was to determine the feasibility of the northernmost human-planted mangroves in China to accumulate sediment and carbon. Our results showed that fine-grained materials were preserved well in the interior part of the mangroves, and the capacity to capture fine-grained materials increased as the forest aged. The biogeochemical properties (C/N: 5.9 to 10.8; δ13C: −21.60‰ to −26.07‰) indicated that the local organic carbon pool was composed of a mixture of autochthonous and allochthonous sources. Moreover, the accumulation of organic carbon increased with the forest age. The interior part of the old mangrove had the highest organic carbon stock (81.93 Mg Corg ha−1). These findings revealed that mangrove reforestation had positive effects on sediments and organic carbon accretion.


CATENA ◽  
2022 ◽  
Vol 208 ◽  
pp. 105761
Author(s):  
Lianlian Zhu ◽  
Zhengmiao Deng ◽  
Yonghong Xie ◽  
Chengyi Zhang ◽  
Xiaorong Chen ◽  
...  

Agronomy ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2135
Author(s):  
Peigang Dai ◽  
Ping Cong ◽  
Peng Wang ◽  
Jianxin Dong ◽  
Zhaorong Dong ◽  
...  

Long term tobacco planting leads to soil acidification. A ten-year experiment with various fertilization treatments (no fertilization (CK), chemical fertilizer (CF), organic-inorganic compound fertilizer (OCF), and organic fertilizer (OF)) was carried out between 2010 and 2020 in a continuous cropping system of Nicotiana tabacum in the brown soil of eastern China, to assess the effects of organic fertilizer on the improvement of tobacco planting soil acidification. The results indicated that treatments OCF and OF reduced the soil exchangeable acid content, of which the exchangeable aluminum showed the largest reduction by 51.28% with the OF treatment. In contrast, treatment CF showed more significant increases in exchangeable aluminum (Al)and Al saturation, and also apparently increased soil NO3−-N, NH4+-N and nitrification potential (NP) than other treatments. Treatments of OCF and OF significantly increased the total amount of exchangeable base (EBC) by 37.19% and 42.00% compared with CF, respectively. Redundancy analysis (RDA) showed that NP, NH4+-N, and NO3−-N were the important factors indicating soil acidification, while EBC and exchangeable K were the significant factors restricting soil acidification. Inevitably, OCF could improve the soil organic carbon pool and labile organic carbon pool. The structural equation model (SEM) showed that OCF treatment increased the soil organic carbon pool mainly by inhibiting soil nitrification and reducing the content of exchangeable Al. In conclusion, both OF and OCF treatments were effective methods to alleviate tobacco planting soil acidification, however OCF had more advantages in improving soil organic carbon pool.


2021 ◽  
Vol 118 (38) ◽  
pp. e2101742118
Author(s):  
Ype van der Velde ◽  
Arnaud J. A. M. Temme ◽  
Jelmer J. Nijp ◽  
Maarten C. Braakhekke ◽  
George A. K. van Voorn ◽  
...  

Northern peatlands store large amounts of carbon. Observations indicate that forests and peatlands in northern biomes can be alternative stable states for a range of landscape settings. Climatic and hydrological changes may reduce the resilience of peatlands and forests, induce persistent shifts between these states, and release the carbon stored in peatlands. Here, we present a dynamic simulation model constrained and validated by a wide set of observations to quantify how feedbacks in water and carbon cycling control resilience of both peatlands and forests in northern landscapes. Our results show that 34% of Europe (area) has a climate that can currently sustain existing rainwater-fed peatlands (raised bogs). However, raised bog initiation and restoration by water conservation measures after the original peat soil has disappeared is only possible in 10% of Europe where the climate allows raised bogs to initiate and outcompete forests. Moreover, in another 10% of Europe, existing raised bogs (concerning ∼20% of the European raised bogs) are already affected by ongoing climate change. Here, forests may overgrow peatlands, which could potentially release in the order of 4% (∼24 Pg carbon) of the European soil organic carbon pool. Our study demonstrates quantitatively that preserving and restoring peatlands requires looking beyond peatland-specific processes and taking into account wider landscape-scale feedbacks with forest ecosystems.


2021 ◽  
Vol 18 (16) ◽  
pp. 4791-4816
Author(s):  
Stuart A. Vyse ◽  
Ulrike Herzschuh ◽  
Gregor Pfalz ◽  
Lyudmila A. Pestryakova ◽  
Bernhard Diekmann ◽  
...  

Abstract. Lakes act as important sinks for inorganic and organic sediment components. However, investigations of sedimentary carbon budgets within glacial lakes are currently absent from Arctic Siberia. The aim of this paper is to provide the first reconstruction of accumulation rates, sediment and carbon budgets from a lacustrine sediment core from Lake Rauchuagytgyn, Chukotka (Arctic Siberia). We combined multiple sediment biogeochemical and sedimentological parameters from a radiocarbon-dated 6.5 m sediment core with lake basin hydroacoustic data to derive sediment stratigraphy, sediment volumes and infill budgets. Our results distinguished three principal sediment and carbon accumulation regimes that could be identified across all measured environmental proxies including early Marine Isotope Stage 2 (MIS2) (ca. 29–23.4 ka cal BP), mid-MIS2–early MIS1 (ca. 23.4–11.69 ka cal BP) and the Holocene (ca. 11.69–present). Estimated organic carbon accumulation rates (OCARs) were higher within Holocene sediments (average 3.53 g OC m−2 a−1) than Pleistocene sediments (average 1.08 g OC m−2 a−1) and are similar to those calculated for boreal lakes from Quebec and Finland and Lake Baikal but significantly lower than Siberian thermokarst lakes and Alberta glacial lakes. Using a bootstrapping approach, we estimated the total organic carbon pool to be 0.26 ± 0.02 Mt and a total sediment pool of 25.7 ± 1.71 Mt within a hydroacoustically derived sediment volume of ca. 32 990 557 m3. The total organic carbon pool is substantially smaller than Alaskan yedoma, thermokarst lake sediments and Alberta glacial lakes but shares similarities with Finnish boreal lakes. Temporal variability in sediment and carbon accumulation dynamics at Lake Rauchuagytgyn is controlled predominantly by palaeoclimate variation that regulates lake ice-cover dynamics and catchment glacial, fluvial and permafrost processes through time. These processes, in turn, affect catchment and within-lake primary productivity as well as catchment soil development. Spatial differences compared to other lake systems at a trans-regional scale likely relate to the high-latitude, mountainous location of Lake Rauchuagytgyn.


Sign in / Sign up

Export Citation Format

Share Document