scholarly journals Numerical analysis of wave-induced fluid flow effects on seismic data: Application to monitoring of CO2storage at the Sleipner field

Author(s):  
J. Germán Rubino ◽  
Danilo R. Velis ◽  
Mauricio D. Sacchi
Geophysics ◽  
2020 ◽  
Vol 85 (1) ◽  
pp. D1-D11
Author(s):  
Elliot J. H. Dahl ◽  
Kyle T. Spikes

Wave-induced fluid flow (WIFF) can significantly alter the effective formation velocities and cause increasing waveform dispersion and attenuation. We have used modified frame moduli from the theory of Chapman together with the classic Biot theory to improve the understanding of local- and global-flow effects on dipole flexural wave modes in boreholes. We investigate slow and fast formations with and without compliant pores, which induce local flow. The discrete wavenumber summation method generates the waveforms, which are then processed with the weighted spectral semblance method to compare with the solution of the period equation. We find compliant pores to decrease the resulting effective formation P- and S-wave velocities, that in turn decrease the low-frequency velocity limit of the flexural wave. Furthermore, depending on the frequency at which the local-flow dispersion occurs, different S-wave velocity predictions from the flexural wave become possible. This issue is investigated through changing the local-flow critical frequency. Sensitivity analyses of the flexural-wave phase velocity to small changes in WIFF parameters indicate the modeling to be mostly sensitive to compliant pores in slow and fast formations.


Geophysics ◽  
2011 ◽  
Vol 76 (3) ◽  
pp. R57-R67 ◽  
Author(s):  
J. Germán Rubino ◽  
Danilo R. Velis

We studied the seismic attenuation and velocity dispersion effects produced by wave-induced fluid flow in weakly consolidated sandstones containing patchy carbon dioxide [Formula: see text]-brine distributions. The analysis also focuses on the velocity pushdown because of the presence of this gas, as well as on the role of the wave-induced fluid flow (mesoscopic) effects on the amplitude variation with angle (AVA) seismic response of thin layers containing [Formula: see text], such as those found at the Utsira Sand, Sleipner field, offshore Norway. We found that this loss mechanism may play a key role on conventional surface seismic data, suggesting that further data analysis may provide useful information on the characteristics of the fluid distributions in these environments. Numerical experiments let us observe that although mesoscopic effects can be very significant in this kind of media, the seismic response of a given isolated thin layer computed considering such effects is very similar to that of a homogeneous elastic thin layer with a compressional velocity equal to that of the original porous rock averaged in the effective data bandwidth. This suggests that the thin-bed prestack spectral inversion method published by the authors could be used to estimate representative compressional velocities and layer thicknesses in these environments. In effect, results using realistic synthetic prestack seismic data show that isolated [Formula: see text]-bearing thin beds can be characterized in terms of their thicknesses and representative compressional velocities. This information can be qualitatively related to [Formula: see text] saturations and volumes; thus, the prestack spectral inversion method could find application in the monitoring of the evolution of [Formula: see text] plumes at injection sites similar to that at the Sleipner field.


Author(s):  
João Pedro Costa Eliziário ◽  
andrevidy honório ◽  
Marcos Lourenço ◽  
Elie Luis Martínez Padilla

2021 ◽  
Vol 33 (1) ◽  
pp. 111-119
Author(s):  
M. I. Alamayreh ◽  
A. Fenocchi ◽  
G. Petaccia ◽  
S. Sibilla ◽  
E. Persi

2022 ◽  
Vol 171 ◽  
pp. 107248
Author(s):  
L.Y. Zhang ◽  
R.J. Duan ◽  
Y. Che ◽  
Z. Lu ◽  
X. Cui ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document