scholarly journals Electron flux changes in the outer radiation belt by radial diffusion during the storm recovery phase in comparison with the fully adiabatic evolution

2011 ◽  
Vol 116 (A9) ◽  
pp. n/a-n/a ◽  
Author(s):  
Kyung-Chan Kim ◽  
Dae-Young Lee ◽  
Yuri Shprits ◽  
Hee-Jeong Kim ◽  
Ensang Lee
2020 ◽  
Author(s):  
Xiaofei Shi ◽  
Jie Ren ◽  
Qiugang Zong

<p>We present a statistical study of energy-dependent and L shell-dependent inner boundary of the outer radiation belt during 37 isolated geomagnetic storms using observations from Van Allen Probes from 2013 to 2017. There are mutual transformations between "V-shaped" and "S-shaped" inner boundaries during different storm phases, resulting from the competition among electron loss, radial transport and local acceleration. The radial position, onset time, E<sub>st</sub> (the minimum energy at L<sub>st</sub> where the inner boundary starts to exhibit an S-shaped form), and the radial width of S-shaped boundary (ΔL) are quantitatively defined according to the formation of a reversed energy spectrum (electron flux going up with increasing energies from hundreds of keV to ~1 MeV) from a kappa-like spectrum (electron flux steeply falling with increasing energies). The case and statistical results present that (1) The inner boundary has repeatable features associated with storms: the inner boundary is transformed from S-shaped to V-shaped form in several hours during the storm commencement and main phase, and retains in the V-shaped form for several days until it evolves into S-shaped during late recovery phase; (2) ΔL shows positive correlation with SYM-H index; (3) The duration of the V-shaped form is positively correlated with the storm intensity and the duration of the recovery phase; (4) The minimum energy E<sub>st</sub> are mainly distributed in the range of 100-550 keV. All these findings have important implications for understanding the dynamics of energetic electrons in the slot region and the outer radiation belt during geomagnetic storms.</p>


2020 ◽  
Author(s):  
Artem Smirnov ◽  
Max Berrendorf ◽  
Yuri Shprits ◽  
Elena A. Kronberg ◽  
Hayley J Allison ◽  
...  

2021 ◽  
Author(s):  
Christos Katsavrias ◽  
Ioannis A. Daglis ◽  
Afroditi Nasi ◽  
Constantinos Papadimitriou ◽  
Marina Georgiou

<p>Radial diffusion has been established as one of the most important mechanisms contributing the acceleration and loss of relativistic electrons in the outer radiation belt. Over the past few years efforts have been devoted to provide empirical relationships of radial diffusion coefficients (D<sub>LL</sub>) for radiation belt simulations yet several studies have suggested that the difference between the various models can be orders of magnitude different at high levels of geomagnetic activity as the observed D<sub>LL</sub> have been shown to be highly event-specific. In the frame of SafeSpace project we have used 12 years (2009 – 2020) of multi-point magnetic and electric field measurements from THEMIS A, D and E satellites to create a database of calculated D<sub>LL</sub>. In this work we present the first statistics on the evolution of D<sub>LL </sub>during the various phases of Solar cycle 24 with respect to the various solar wind parameters and geomagnetic indices.</p><p>This work has received funding from the European Union's Horizon 2020 research and innovation programme “SafeSpace” under grant agreement No 870437.</p>


2021 ◽  
Author(s):  
Jasmine Sandhu ◽  
Jonathan Rae ◽  
John Wygant ◽  
Aaron Breneman ◽  
Sheng Tian ◽  
...  

<p>Ultra Low Frequency (ULF) waves drive radial diffusion of radiation belt electrons, where this process contributes to and, at times, dominates energisation, loss, and large scale transport of the outer radiation belt. In this study we quantify the changes and variability in ULF wave power during geomagnetic storms, through a statistical analysis of Van Allen Probes data for the time period spanning 2012 – 2019. The results show that global wave power enhancements occur during the main phase, and continue into the recovery phase of storms. Local time asymmetries show sources of ULF wave power are both external solar wind driving as well as internal sources from coupling with ring current ions and substorms.</p><p>The statistical analysis demonstrates that storm time ULF waves are able to access lower L values compared to pre-storm conditions, with enhancements observed within L = 4. We assess how magnetospheric compressions and cold plasma distributions shape how ULF wave power propagates through the magnetosphere. Results show that the Earthward displacement of the magnetopause is a key factor in the low L enhancements. Furthermore, the presence of plasmaspheric plumes during geomagnetic storms plays a crucial role in trapping ULF wave power, and contributes significantly to large storm time enhancements in ULF wave power.</p><p>The results have clear implications for enhanced radial diffusion of the outer radiation belt during geomagnetic storms. Estimates of storm time radial diffusion coefficients are derived from the ULF wave power observations, and compared to existing empirical models of radial diffusion coefficients. We show that current Kp-parameterised models, such as the Ozeke et al. [2014] model, do not fully capture the large variability in storm time radial diffusion coefficients or the extent of enhancements in the magnetic field diffusion coefficients.</p>


2007 ◽  
Vol 25 (6) ◽  
pp. 1359-1364 ◽  
Author(s):  
H. Tadokoro ◽  
F. Tsuchiya ◽  
Y. Miyoshi ◽  
H. Misawa ◽  
A. Morioka ◽  
...  

Abstract. During moderate magnetic storms, an electron channel (300–1100 keV) of the NOAA satellite has shown sudden electron flux enhancements in the inner radiation belt. After examinating the possibility of contamination by different energetic particles, we conclude that these electron flux enhancements are reliable enough to be considered as natural phenomena, at least for the cases of small to moderate magnetic storms. Here, we define small and moderate storms to be those in which the minimum Dst ranges between −30 and −100 nT. The electron flux enhancements appear with over one order of magnitude at L~2 during these storms. The enhancement is not accompanied by any transport of electron flux from the outer belt. Statistical analysis shows that these phenomena have a duration of approximately 1 day during the period, starting with the main phase to the early recovery phase of the storms. The flux enhancement shows a dawn-dusk asymmetry; the amount of increased flux is larger in the dusk side. We suggest that this phenomenon could not be caused by the radial diffusion but would be due to pitch-angle scattering at the magnetic equator. The inner belt is not in a stationary state, as was previously believed, but is variable in response to the magnetic activity.


2002 ◽  
Vol 20 (7) ◽  
pp. 957-965 ◽  
Author(s):  
R. H. A. Iles ◽  
A. N. Fazakerley ◽  
A. D. Johnstone ◽  
N. P. Meredith ◽  
P. Bühler

Abstract. The relativistic electron response in the outer radiation belt during magnetic storms has been studied in relation to solar wind and geomagnetic parameters during the first six months of 1995, a period in which there were a number of recurrent fast solar wind streams. The relativistic electron population was measured by instruments on board the two microsatellites, STRV-1a and STRV-1b, which traversed the radiation belt four times per day from L ~ 1 out to L ~ 7 on highly elliptical, near-equatorial orbits. Variations in the E > 750 keV and E > 1 MeV electrons during the main phase and recovery phase of 17 magnetic storms have been compared with the solar wind speed, interplanetary magnetic field z-component, Bz , the solar wind dynamic pressure and Dst *. Three different types of electron responses are identified, with outcomes that strongly depend on the solar wind speed and interplanetary magnetic field orientation during the magnetic storm recovery phase. Observations also confirm that the L-shell, at which the peak enhancement in the electron count rate occurs has a dependence on Dst *.Key words. Magnetospheric physics (energetic particles, trapped; storms and substorms) – Space plasma physics (charged particle motion and accelerations)


Sign in / Sign up

Export Citation Format

Share Document