scholarly journals On the nature of short-period mesospheric gravity wave propagation over Halley, Antarctica

2012 ◽  
Vol 117 (D5) ◽  
pp. n/a-n/a ◽  
Author(s):  
K. Nielsen ◽  
M. J. Taylor ◽  
R. E. Hibbins ◽  
M. J. Jarvis ◽  
J. M. Russell
2012 ◽  
Vol 18 (4(77)) ◽  
pp. 30-36 ◽  
Author(s):  
Y.I. Kryuchkov ◽  
◽  
O.K. Cheremnykh ◽  
A.K. Fedorenko ◽  
◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
R. N. Ghodpage ◽  
A. Taori ◽  
P. T. Patil ◽  
S. Gurubaran ◽  
A. K. Sharma ◽  
...  

Simultaneous mesospheric OH and O  (1S) night airglow intensity measurements from Kolhapur (16.8°N, 74.2°E) reveal unambiguous gravity wave signatures with periods varying from 01 hr to 9 hr with upward propagation. The amplitudes growth of these waves is found to vary from 0.4 to 2.2 while propagating from the OH layer (~87 km) to the O (1S) layer (~97 km). We find that vertical wavelength of the observed waves increases with the wave period. The damping factors calculated for the observed waves show large variations and that most of these waves were damped while traveling from the OH emission layer to the O (1S) emission layer. The damping factors for the waves show a positive correlation at vertical wavelengths shorter than 40 km, while a negative correlation at higher vertical wavelengths. We note that the damping factors have stronger positive correlation with meridional wind shears compared to the zonal wind shears.


2021 ◽  
Vol 126 (18) ◽  
Author(s):  
D. Alexandre ◽  
B. Thurairajah ◽  
S. L. England ◽  
C. Y. Cullens

1974 ◽  
Vol 55 (S1) ◽  
pp. S75-S75
Author(s):  
Wayne A. Kinney ◽  
Christopher Y. Kapper ◽  
Allan D. Pierce

2016 ◽  
Vol 121 (21) ◽  
pp. 12,737-12,750 ◽  
Author(s):  
Bing Cao ◽  
Christopher J. Heale ◽  
Yafang Guo ◽  
Alan Z. Liu ◽  
Jonathan B. Snively

2010 ◽  
Vol 28 (5) ◽  
pp. 1133-1140 ◽  
Author(s):  
M. A. Cabrera ◽  
M. Pezzopane ◽  
E. Zuccheretti ◽  
R. G. Ezquer

Abstract. Range spread-F (RSF) and occurrence of "satellite" traces prior to RSF onset were studied at the southern peak of the ionospheric equatorial anomaly (EA). Ionograms recorded in September 2007 at the new ionospheric station of Tucumán, Argentina (26.9° S, 294.6° E, dip latitude 15.5° S), by the Advanced Ionospheric Sounder (AIS) developed at the Istituto Nazionale di Geofisica e Vulcanologia (INGV), were considered. Satellite traces (STs) are confirmed to be a necessary precursor to the appearance of an RSF trace on the ionograms. Moreover, an analysis of isoheight contours of electron density seems to suggest a relationship between RSF occurrence and gravity wave (GW) propagation.


Sign in / Sign up

Export Citation Format

Share Document