scholarly journals Seasonal variations of stratospheric age spectra in the Goddard Earth Observing System Chemistry Climate Model (GEOSCCM)

2012 ◽  
Vol 117 (D5) ◽  
pp. n/a-n/a ◽  
Author(s):  
Feng Li ◽  
Darryn W. Waugh ◽  
Anne R. Douglass ◽  
Paul A. Newman ◽  
Steven Pawson ◽  
...  
2015 ◽  
Vol 28 (12) ◽  
pp. 4997-5014 ◽  
Author(s):  
Clara Orbe ◽  
Paul A. Newman ◽  
Darryn W. Waugh ◽  
Mark Holzer ◽  
Luke D. Oman ◽  
...  

Abstract The first climatology of airmass origin in the Arctic is presented in terms of rigorously defined airmass fractions that partition air according to where it last contacted the planetary boundary layer (PBL). Results from a present-day climate integration of the Goddard Earth Observing System Chemistry–Climate Model (GEOSCCM) reveal that the majority of air in the Arctic below 700 mb last contacted the PBL poleward of 60°N. By comparison, 62% (±0.8%) of the air above 700 mb originates over Northern Hemisphere midlatitudes (i.e., “midlatitude air”). Seasonal variations in the airmass fractions above 700 mb reveal that during boreal winter air from midlatitudes originates primarily over the oceans, with 26% (±1.9%) last contacting the PBL over the eastern Pacific, 21% (±0.87%) over the Atlantic, and 16% (±1.2%) over the western Pacific. During summer, by comparison, midlatitude air originates primarily over land, overwhelmingly so over Asia [41% (±1.0%)] and, to a lesser extent, over North America [24% (±1.5%)]. Seasonal variations in the airmass fractions are interpreted in terms of changes in the large-scale ventilation of the midlatitude boundary layer and the midlatitude tropospheric jet.


Author(s):  
Steven Pawson ◽  
Richard S. Stolarski ◽  
Anne R. Douglass ◽  
Paul A. Newman ◽  
J. Eric Nielsen ◽  
...  

2016 ◽  
Author(s):  
Chaim I. Garfinkel ◽  
Valentina Aquila ◽  
Darryn W. Waugh ◽  
Luke D. Oman

Abstract. A series of simulations using the NASA Goddard Earth Observing System Chemistry-Climate Model are analyzed in order to assess changes in the Brewer-Dobson Circulation (BDC) over the past 55 years. When trends are computed over the past 55 years, the BDC accelerates throughout the stratosphere, consistent with previous modeling results. However, over the second half of the simulations (i.e. since the late 1980s), the model simulates structural changes in the BDC as the temporal evolution of the BDC varies between regions in the stratosphere. In the mid-stratosphere in the mid-latitude Northern Hemisphere, the BDC decelerates in a simulation despite increases in greenhouse gas concentrations and warming sea surface temperatures. This deceleration is reminiscent of changes inferred from satellite instruments and in-situ measurements. In contrast, the BDC in the lower-stratosphere continues to accelerate. The main forcing agents for the recent slowdown in the mid-stratosphere appear to be declining ODS concentrations and the timing of volcanic eruptions. Changes in both age of air and the tropical upwelling of the residual circulation are similar. We therefore clarify that the statement that is often made that climate models simulate a decreasing age throughout the stratosphere only applies over long time periods, and is not the case for the past 25 years when we have most tracer measurements.


2012 ◽  
Vol 117 (D20) ◽  
Author(s):  
Feng Li ◽  
Darryn W. Waugh ◽  
Anne R. Douglass ◽  
Paul A. Newman ◽  
Susan E. Strahan ◽  
...  

2009 ◽  
Vol 9 (6) ◽  
pp. 23623-23664
Author(s):  
Q. Liang ◽  
R. S. Stolarski ◽  
S. R. Kawa ◽  
J. E. Nielsen ◽  
J. M. Rodriguez ◽  
...  

Abstract. Recent in situ and satellite measurements suggest a contribution of ~5 pptv to stratospheric inorganic bromine from short-lived bromocarbons. We conduct a modeling study of the two most important short-lived bromocarbons, bromoform (CHBr3) and dibromomethane (CH2Br2), with the Goddard Earth Observing System Chemistry Climate Model (GEOS CCM) to account for this missing stratospheric bromine. We derive a "top-down" emission estimate of CHBr3 and CH2Br2 using airborne measurements in the Pacific and North American troposphere and lower stratosphere (LS) obtained during previous NASA aircraft campaigns. Our emission estimate suggests that to reproduce the observed concentrations in the free troposphere, a global oceanic emission of 425 Gg Br yr−1 for CHBr3 and 57 Gg Br yr−1 for CH2Br2 is needed, with 60% of emissions from open ocean and 40% from coastal regions. Although our simple emission scheme assumes no seasonal variations, the model reproduces the observed seasonal variations of the short-lived bromocarbons with high concentrations in winter and low concentrations in summer. This indicates that the seasonality of short-lived bromocarbons is largely due to seasonality in their chemical loss and transport. The inclusion of CHBr3 and CH2Br2 contributes ~5 pptv bromine throughout the stratosphere. Both the source gases and inorganic bromine produced from the source gas degradation (BryVSLS) in the troposphere are transported into the stratosphere, and are equally important. Inorganic bromine accounts for half (2.5 pptv) of the bromine from the inclusion of CHBr3 and CH2Br2 near the tropical tropopause and its contribution rapidly increases to ~100% as altitude increases. More than 85% of the wet scavenging of BryVSLS occurs in large-scale precipitation below 500 hPa and BryVSLS in the stratosphere is not sensitive to convection.


2015 ◽  
Vol 15 (2) ◽  
pp. 829-843 ◽  
Author(s):  
T. Sakazaki ◽  
M. Shiotani ◽  
M. Suzuki ◽  
D. Kinnison ◽  
J. M. Zawodny ◽  
...  

Abstract. This paper contains a comprehensive investigation of the sunset–sunrise difference (SSD, i.e., the sunset-minus-sunrise value) of the ozone mixing ratio in the latitude range of 10° S–10° N. SSD values were determined from solar occultation measurements based on data obtained from the Stratospheric Aerosol and Gas Experiment (SAGE) II, the Halogen Occultation Experiment (HALOE), and the Atmospheric Chemistry Experiment–Fourier transform spectrometer (ACE–FTS). The SSD was negative at altitudes of 20–30 km (−0.1 ppmv at 25 km) and positive at 30–50 km (+0.2 ppmv at 40–45 km) for HALOE and ACE–FTS data. SAGE II data also showed a qualitatively similar result, although the SSD in the upper stratosphere was 2 times larger than those derived from the other data sets. On the basis of an analysis of data from the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES) and a nudged chemical transport model (the specified dynamics version of the Whole Atmosphere Community Climate Model: SD–WACCM), we conclude that the SSD can be explained by diurnal variations in the ozone concentration, particularly those caused by vertical transport by the atmospheric tidal winds. All data sets showed significant seasonal variations in the SSD; the SSD in the upper stratosphere is greatest from December through February, while that in the lower stratosphere reaches a maximum twice: during the periods March–April and September–October. Based on an analysis of SD–WACCM results, we found that these seasonal variations follow those associated with the tidal vertical winds.


2014 ◽  
Vol 14 (1) ◽  
pp. 283-299 ◽  
Author(s):  
V. F. Sofieva ◽  
J. Tamminen ◽  
E. Kyrölä ◽  
T. Mielonen ◽  
P. Veefkind ◽  
...  

Abstract. A new ozone climatology, based on ozonesonde and satellite measurements, spanning the altitude region between the earth's surface and ~60 km is presented (TpO3 climatology). This climatology is novel in that the ozone profiles are categorized according to calendar month, latitude and local tropopause heights. Compared to the standard latitude–month categorization, this presentation improves the representativeness of the ozone climatology in the upper troposphere and the lower stratosphere (UTLS). The probability distribution of tropopause heights in each latitude–month bin provides additional climatological information and allows transforming/comparing the TpO3 climatology to a standard climatology of zonal mean ozone profiles. The TpO3 climatology is based on high-vertical-resolution measurements of ozone from the satellite-based Stratospheric Aerosol and Gas Experiment II (in 1984 to 2005) and from balloon-borne ozonesondes from 1980 to 2006. The main benefits of the TpO3 climatology are reduced standard deviations on climatological ozone profiles in the UTLS, partial characterization of longitudinal variability, and characterization of ozone profiles in the presence of double tropopauses. The first successful application of the TpO3 climatology as a priori in ozone profile retrievals from Ozone Monitoring Instrument on board the Earth Observing System (EOS) Aura satellite shows an improvement of ozone precision in UTLS of up to 10% compared with the use of conventional climatologies. In addition to being advantageous for use as a priori in satellite retrieval algorithms, the TpO3 climatology might be also useful for validating the representation of ozone in climate model simulations.


2014 ◽  
Vol 14 (11) ◽  
pp. 16043-16083
Author(s):  
T. Sakazaki ◽  
M. Shiotani ◽  
M. Suzuki ◽  
D. Kinnison ◽  
J. M. Zawodny ◽  
...  

Abstract. This paper contains a comprehensive investigation of the sunset–sunrise difference (SSD; i.e., the sunset-minus-sunrise value) of the ozone mixing ratio in the latitude range of 10° S–10° N. SSD values were determined from solar occultation measurements based on data obtained from the Stratospheric Aerosol and Gas Experiment (SAGE) II, the Halogen Occultation Experiment (HALOE), and the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS). The SSD was negative at altitudes of 20–30 km (–0.1 ppmv at 25 km) and positive at 30–50 km (+0.2 ppmv at 40–45 km) for HALOE and ACE–FTS data. SAGE II data also showed a qualitatively similar result, although the SSD in the upper stratosphere was two times larger than those derived from the other datasets. On the basis of an analysis of data from the Superconducting Submillimeter Limb Emission Sounder (SMILES), and a nudged chemical-transport model (the Specified Dynamics version of the Whole Atmosphere Community Climate Model: SD–WACCM), we conclude that the SSD can be explained by diurnal variations in the ozone concentration, particularly those caused by vertical transport by the atmospheric tidal winds. All datasets showed significant seasonal variations in the SSD; the SSD in the upper stratosphere is greatest from December through February, while that in the lower stratosphere reaches a maximum twice: during the periods March–April and September–October. Based on an analysis of SD–WACCM results, we found that these seasonal variations follow those associated with the tidal vertical winds.


2012 ◽  
Vol 41 (9-10) ◽  
pp. 2679-2696 ◽  
Author(s):  
Yoko Tsushima ◽  
Mark A. Ringer ◽  
Mark J. Webb ◽  
Keith D. Williams

Sign in / Sign up

Export Citation Format

Share Document