stratospheric water vapor
Recently Published Documents


TOTAL DOCUMENTS

251
(FIVE YEARS 51)

H-INDEX

38
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Ilaria Quaglia ◽  
Daniele Visioni ◽  
Giovanni Pitari ◽  
Ben Kravitz

Abstract. Sulfate geoengineering (SG) methods based on lower stratospheric tropical injection of sulfur dioxide (SO2) have been widely discussed in recent years, focusing on the direct and indirect effects they would have on the climate system. Here a potential alternative method is discussed, where sulfur emissions are located at the surface in the form of carbonyl sulfide (COS) gas. A time-dependent chemistry-climate model experiment is designed from year 2021 to 2055, assuming a 40 Tg-S/yr artificial global flux of COS, geographically distributed following the present day anthropogenic COS surface emissions. The budget of COS and sulfur species is discussed, as well as the effects of SG-COS on the stratospheric sulfate aerosol optical depth (Δ τ = 0.080 in years 2046–2055), aerosol effective radius (0.46 μm), surface SOx deposition (+8.7 %) and tropopause radiative forcing (RF) (−2.0 W/m2 for clear sky conditions and −1.5 W/m2 including the cloud adjustment). Indirect effects on ozone, methane and stratospheric water vapor are also considered, along with the COS direct contribution (with an overall gas phase global radiative forcing of +0.23 W/m2). According to our model results, the resulting net RF of this SG-COS experiment is −1.3 W/m2 for the year 2050, and it is comparable to the corresponding RF of −1.7 W/m2 obtained with a sustained injection of 4 Tg-S/yr in the tropical lower stratosphere in the form of SO2 (SG-SO2, able to produce a comparable increase of the sulfate aerosol optical depth). Significant changes of the stratospheric ozone response are found in SG-COS with respect to SG-SO2 (+4.9 DU versus +1.5 DU, globally). According to the model results, the resulting UVB perturbation at the surface accounts to −4.3 % as a global-annual average (versus −2.4 % in the SG-SO2 case), with a springtime Antarctic decrease of −2.7 % (versus a +5.8 % increase in the SG-SO2 experiment). Overall, we find that an increase in COS surface emission may be feasible, and produce a more latitudinally-uniform forcing without the need for the deployment of stratospheric aircrafts.


2021 ◽  
Vol 21 (8) ◽  
pp. 6565-6591
Author(s):  
Clarissa Alicia Kroll ◽  
Sally Dacie ◽  
Alon Azoulay ◽  
Hauke Schmidt ◽  
Claudia Timmreck

Abstract. Increasing the temperature of the tropical cold-point region through heating by volcanic aerosols results in increases in the entry value of stratospheric water vapor (SWV) and subsequent changes in the atmospheric energy budget. We analyze tropical volcanic eruptions of different strengths with sulfur (S) injections ranging from 2.5 Tg S up to 40 Tg S using EVAens, the 100-member ensemble of the Max Planck Institute – Earth System Model in its low-resolution configuration (MPI-ESM-LR) with artificial volcanic forcing generated by the Easy Volcanic Aerosol (EVA) tool. Significant increases in SWV are found for the mean over all ensemble members from 2.5 Tg S onward ranging between [5, 160] %. However, for single ensemble members, the standard deviation between the control run members (0 Tg S) is larger than SWV increase of single ensemble members for eruption strengths up to 20 Tg S. A historical simulation using observation-based forcing files of the Mt. Pinatubo eruption, which was estimated to have emitted (7.5±2.5) Tg S, returns SWV increases slightly higher than the 10 Tg S EVAens simulations due to differences in the aerosol profile shape. An additional amplification of the tape recorder signal is also apparent, which is not present in the 10 Tg S run. These differences underline that it is not only the eruption volume but also the aerosol layer shape and location with respect to the cold point that have to be considered for post-eruption SWV increases. The additional tropical clear-sky SWV forcing for the different eruption strengths amounts to [0.02, 0.65] W m−2, ranging between [2.5, 4] % of the aerosol radiative forcing in the 10 Tg S scenario. The monthly cold-point temperature increases leading to the SWV increase are not linear with respect to aerosol optical depth (AOD) nor is the corresponding SWV forcing, among others, due to hysteresis effects, seasonal dependencies, aerosol profile heights and feedbacks. However, knowledge of the cold-point temperature increase allows for an estimation of SWV increases of 12 % per Kelvin increase in mean cold-point temperature. For yearly averages, power functions are fitted to the cold-point warming and SWV forcing with increasing AOD.


Author(s):  
Mijeong Park ◽  
William J. Randel ◽  
Robert P. Damadeo ◽  
David E. Flittner ◽  
Sean M. Davis ◽  
...  

2021 ◽  
Vol 21 (5) ◽  
pp. 3725-3740
Author(s):  
Chaim I. Garfinkel ◽  
Ohad Harari ◽  
Shlomi Ziskin Ziv ◽  
Jian Rao ◽  
Olaf Morgenstern ◽  
...  

Abstract. The connection between the dominant mode of interannual variability in the tropical troposphere, the El Niño–Southern Oscillation (ENSO), and the entry of stratospheric water vapor is analyzed in a set of model simulations archived for the Chemistry-Climate Model Initiative (CCMI) project and for Phase 6 of the Coupled Model Intercomparison Project. While the models agree on the temperature response to ENSO in the tropical troposphere and lower stratosphere, and all models and observations also agree on the zonal structure of the temperature response in the tropical tropopause layer, the only aspect of the entry water vapor response with consensus in both models and observations is that La Niña leads to moistening in winter relative to neutral ENSO. For El Niño and for other seasons, there are significant differences among the models. For example, some models find that the enhanced water vapor for La Niña in the winter of the event reverses in spring and summer, some models find that this moistening persists, and some show a nonlinear response, with both El Niño and La Niña leading to enhanced water vapor in both winter, spring, and summer. A moistening in the spring following El Niño events, the signal focused on in much previous work, is simulated by only half of the models. Focusing on Central Pacific ENSO vs. East Pacific ENSO, or temperatures in the mid-troposphere compared with temperatures near the surface, does not narrow the inter-model discrepancies. Despite this diversity in response, the temperature response near the cold point can explain the response of water vapor when each model is considered separately. While the observational record is too short to fully constrain the response to ENSO, it is clear that most models suffer from biases in the magnitude of the interannual variability of entry water vapor. This bias could be due to biased cold-point temperatures in some models, but others appear to be missing forcing processes that contribute to observed variability near the cold point.


2021 ◽  
Author(s):  
James Keeble ◽  
Birgit Hassler ◽  
Antara Banerjee ◽  
Ramiro Checa-Garcia ◽  
Gabriel Chiodo ◽  
...  

<p>Stratospheric ozone and water vapor are key components of the Earth system, and past and future changes to both have important impacts on global and regional climate. Here we evaluate long-term changes in these species from the pre-industrial (1850) to the end of the 21<sup>st</sup> century in CMIP6 models under a range of future emissions scenarios. There is good agreement between the CMIP multi-model mean and observations for total column ozone (TCO), although there is substantial variation between the individual CMIP6 models. For the CMIP6 multi-model mean, global mean TCO has increased from ~300 DU in 1850 to ~305 DU in 1960, before rapidly declining in the 1970s and 1980s following the use and emission of halogenated ozone depleting substances (ODSs). TCO is projected to return to 1960’s values by the middle of the 21<sup>st</sup> century under the SSP2-4.5, SSP3-7.0, SSP4-3.4, SSP4-6.0 and SSP5-8.5 scenarios, and under the SSP3-7.0 and SSP5-8.5 scenarios TCO values are projected to be ~10 DU higher than the 1960’s values by 2100. However, under the SSP1-1.9 and SSP1-1.6 scenarios, TCO is not projected to return to the 1960’s values despite reductions in halogenated ODSs due to decreases in tropospheric ozone mixing ratios. This global pattern is similar to regional patterns, except in the tropics where TCO under most scenarios is not projected to return to 1960’s values, either through reductions in tropospheric ozone under SSP1-1.9 and SSP1-2.6, or through reductions in lower stratospheric ozone resulting from an acceleration of the Brewer-Dobson Circulation under other SSPs. In contrast to TCO, there is poorer agreement between the CMIP6 multi-model mean and observed lower stratospheric water vapour mixing ratios, with the CMIP6 multi-model mean underestimating observed water vapour mixing ratios by ~0.5 ppmv at 70hPa. CMIP6 multi-model mean stratospheric water vapor mixing ratios in the tropical lower stratosphere have increased by ~0.5 ppmv from the pre-industrial to the present day and are projected to increase further by the end of the 21<sup>st</sup> century. The largest increases (~2 ppmv) are simulated under the future scenarios with the highest assumed forcing pathway (e.g. SSP5-8.5). Tropical lower stratospheric water vapor, and to a lesser extent TCO, show large variations following explosive volcanic eruptions.</p>


2021 ◽  
Author(s):  
Edward Charlesworth ◽  
Felix Plöger ◽  
Patrick Jöckel

<p>A robust result of climate model simulations is the moistening of the stratosphere.<br>Many models show their strongest changes in stratospheric water vapor in the extratropical lowermost stratosphere, a change which could have substantial climate feedbacks (e.g. Banerjee et al. 2019). However, models are also heavily wet-biased in this region when compared to observations (Keeble et al. 2020), presenting some uncertainty on the robustness of these model results.</p><p>In this study, we investigate the contribution of the choice of model transport scheme to this wet bias using a climate model (EMAC) coupled with two transport schemes: the standard EMAC flux-form semi-Lagrangian (FFSL) scheme and the fully-Lagrangian scheme of CLaMS. This experiment has the advantage of analytical clarity in that the dynamical fields driving both transport schemes are identical. Prior work using this tool has shown large differences in transport timecales within the extratropical lowermost stratosphere depending on the transport scheme used (Charlesworth et al. 2020). </p><p>These results also suggested that EMAC-CLaMS should reduce the transport of water vapor into this region, but calculations of water vapor fields using this tool were not performed until now. We present the results of that work, comparing the water vapor fields calculated using EMAC-CLaMS and EMAC-FFSL online. Two model simulations were performed, wherein each water vapor field was used to drive radiation calculations, such that the radiative consequences of applying one transport scheme or the other could be assessed.</p><p>References:</p><p>Banerjee, A., Chiodo, G., Previdi, M. <em>et al.</em> Stratospheric water vapor: an important climate feedback. <em>Clim Dyn</em> <strong>53, </strong>1697–1710 (2019). https://doi.org/10.1007/s00382-019-04721-4</p><p>Keeble, J., Hassler, B., Banerjee, A., Checa-Garcia, R., Chiodo, G., Davis, S., Eyring, V., Griffiths, P. T., Morgenstern, O., Nowack, P., Zeng, G., Zhang, J., Bodeker, G., Cugnet, D., Danabasoglu, G., Deushi, M., Horowitz, L. W., Li, L., Michou, M., Mills, M. J., Nabat, P., Park, S., and Wu, T.: Evaluating stratospheric ozone and water vapor changes in CMIP6 models from 1850–2100, Atmos. Chem. Phys. Discuss. [preprint], https://doi.org/10.5194/acp-2019-1202, in review, 2020. </p><p>Charlesworth, E. J., Dugstad, A.-K., Fritsch, F., Jöckel, P., and Plöger, F.: Impact of Lagrangian transport on lower-stratospheric transport timescales in a climate model, Atmos. Chem. Phys., 20, 15227–15245, https://doi.org/10.5194/acp-20-15227-2020, 2020. </p>


Sign in / Sign up

Export Citation Format

Share Document