scholarly journals Time varying changes in the simulated structure of the Brewer Dobson Circulation

Author(s):  
Chaim I. Garfinkel ◽  
Valentina Aquila ◽  
Darryn W. Waugh ◽  
Luke D. Oman

Abstract. A series of simulations using the NASA Goddard Earth Observing System Chemistry-Climate Model are analyzed in order to assess changes in the Brewer-Dobson Circulation (BDC) over the past 55 years. When trends are computed over the past 55 years, the BDC accelerates throughout the stratosphere, consistent with previous modeling results. However, over the second half of the simulations (i.e. since the late 1980s), the model simulates structural changes in the BDC as the temporal evolution of the BDC varies between regions in the stratosphere. In the mid-stratosphere in the mid-latitude Northern Hemisphere, the BDC decelerates in a simulation despite increases in greenhouse gas concentrations and warming sea surface temperatures. This deceleration is reminiscent of changes inferred from satellite instruments and in-situ measurements. In contrast, the BDC in the lower-stratosphere continues to accelerate. The main forcing agents for the recent slowdown in the mid-stratosphere appear to be declining ODS concentrations and the timing of volcanic eruptions. Changes in both age of air and the tropical upwelling of the residual circulation are similar. We therefore clarify that the statement that is often made that climate models simulate a decreasing age throughout the stratosphere only applies over long time periods, and is not the case for the past 25 years when we have most tracer measurements.

2017 ◽  
Vol 17 (2) ◽  
pp. 1313-1327 ◽  
Author(s):  
Chaim I. Garfinkel ◽  
Valentina Aquila ◽  
Darryn W. Waugh ◽  
Luke D. Oman

Abstract. A series of simulations using the NASA Goddard Earth Observing System Chemistry Climate Model are analyzed in order to assess changes in the Brewer–Dobson Circulation (BDC) over the past 55 years. When trends are computed over the past 55 years, the BDC accelerates throughout the stratosphere, consistent with previous modeling results. However, over the second half of the simulations (i.e., since the late 1980s), the model simulates structural changes in the BDC as the temporal evolution of the BDC varies between regions in the stratosphere. In the mid-stratosphere in the midlatitude Northern Hemisphere, the BDC does not accelerate in the ensemble mean of our simulations despite increases in greenhouse gas concentrations and warming sea surface temperatures, and it even decelerates in one ensemble member. This deceleration is reminiscent of changes inferred from satellite instruments and in situ measurements. In contrast, the BDC in the lower stratosphere continues to accelerate. The main forcing agents for the recent slowdown in the mid-stratosphere appear to be declining ozone-depleting substance (ODS) concentrations and the timing of volcanic eruptions. Changes in both mean age of air and the tropical upwelling of the residual circulation indicate a lack of recent acceleration. We therefore clarify that the statement that is often made that climate models simulate a decreasing age throughout the stratosphere only applies over long time periods and is not necessarily the case for the past 25 years, when most tracer measurements were taken.


2016 ◽  
Author(s):  
Davide Zanchettin ◽  
Myriam Khodri ◽  
Claudia Timmreck ◽  
Matthew Toohey ◽  
Anja Schmidt ◽  
...  

Abstract. The enhancement of the stratospheric aerosol layer by volcanic eruptions induces a complex set of responses causing global and regional climate effects on a broad range of timescales. Uncertainties exist regarding the climatic response to strong volcanic forcing identified in coupled climate simulations that contributed to the fifth phase of the Climate Model Intercomparison Project (CMIP5). In order to better understand the sources of these model diversities, the model intercomparison project on the climate response to volcanic forcing (VolMIP) has defined a coordinated set of idealized volcanic perturbation experiments to be carried out in alignment with the CMIP6 protocol. VolMIP provides a common stratospheric aerosol dataset for each experiment to eliminate differences in the applied volcanic forcing, and defines a set of initial conditions to determine how internal climate variability contributes to determining the response. VolMIP will assess to what extent volcanically-forced responses of the coupled ocean-atmosphere system are robustly simulated by state-of-the-art coupled climate models and identify the causes that limit robust simulated behavior, especially differences in the treatment of physical processes. This paper illustrates the design of the idealized volcanic perturbation experiments in the VolMIP protocol and describes the common aerosol forcing input datasets to be used.


2020 ◽  
Vol 33 (14) ◽  
pp. 5885-5903 ◽  
Author(s):  
Elinor R. Martin ◽  
Cameron R. Homeyer ◽  
Roarke A. McKinzie ◽  
Kevin M. McCarthy ◽  
Tao Xian

AbstractChanges in tropical width can have important consequences in sectors including ecosystems, agriculture, and health. Observations suggest tropical expansion over the past 30 years although studies have not agreed on the magnitude of this change. Climate model projections have also indicated an expansion and show similar uncertainty in its magnitude. This study utilizes an objective, longitudinally varying, tropopause break method to define the extent of the tropics at upper levels. The location of the tropopause break is associated with enhanced stratosphere–troposphere exchange and thus its structure influences the chemical composition of the stratosphere. The method shows regional variations in the width of the upper-level tropics in the past and future. Four modern reanalyses show significant contraction of the tropics over the eastern Pacific between 1981 and 2015, and slight but significant expansion in other regions. The east Pacific narrowing contributes to zonal mean narrowing, contradicting prior work, and is attributed to the use of monthly and zonal mean data in prior studies. Six global climate models perform well in representing the climatological location of the tropical boundary. Future projections show a spread in the width trend (from ~0.5° decade−1 of narrowing to ~0.4° decade−1 of widening), with a narrowing projected across the east Pacific and Northern Hemisphere Americas. This study illustrates that this objective tropopause break method that uses instantaneous data and does not require zonal averaging is appropriate for identifying upper-level tropical width trends and the break location is connected with local and regional changes in precipitation.


2020 ◽  
Author(s):  
Flavio Maria Emanuele Pons ◽  
Davide Faranda

Abstract. The description and analysis of compound extremes affecting mid and high latitudes in the winter requires an accurate estimation of snowfall. Such variable is often missing for in-situ observations, and biased in climate model outputs, both in magnitude and number of events. While climate models can be adjusted using bias correction (BC), snowfall presents additional challenges compared to other variables, preventing from applying traditional univariate BC methods. We extend the existing literature on the estimation of the snowfall fraction from near-surface temperature, which usually involves binary thresholds or fitting parametric nonlinear functions. We show that, combining breakpoint search algorithms to define threshold temperatures and segmented regression models, it is possible to obtain accurate out-of-sample estimates of snowfall over Europe in ERA5 reanalysis, and to perform effective BC on the IPSL-WRF high resolution EURO-CORDEX climate model only relying on bias adjusted temperature and precipitation. This method offers a feasible way to reconstruct or adjust snowfall observations without requiring multivariate or conditional bias correction and stochastic generation of unobserved events.


2021 ◽  
Author(s):  
Thomas Aubry ◽  
Anja Schmidt ◽  
Alix Harrow ◽  
Jeremy Walton ◽  
Jane Mulcahy ◽  
...  

<p>Reconstructions of volcanic aerosol forcing and its climatic impacts are undermined by uncertainties in both the models used to build these reconstructions as well as the proxy and observational records used to constrain those models. Reducing these uncertainties has been a priority and in particular, several modelling groups have developed interactive stratospheric aerosol models. Provided with an initial volcanic injection of sulfur dioxide, these models can interactively simulate the life cycle and optical properties of sulfate aerosols, and their effects on climate. In contrast, most climate models that took part in the Coupled Model Intercomparison Project Phase 5 and 6 (CMIP6) directly prescribe perturbations in atmospheric optical properties associated with an eruption. However, before the satellite era, the volcanic forcing dataset used for CMIP6 mostly relies on a relatively simple aerosol model and a volcanic sulfur inventory derived from ice-cores, both of which have substantial associated uncertainties.</p><p>In this study, we produced a new set of historical simulations using the UK Earth System Model UKESM1, with interactive stratospheric aerosol capability (referred to as interactive runs hereafter) instead of directly prescribing the CMIP6 volcanic forcing dataset as was done for CMIP6 (standard runs, hereafter). We used one of the most recent volcanic sulfur inventories as input for the interactive runs, in which aerosol properties are consistent with the model chemistry, microphysics and atmospheric components. We analyzed how the stratospheric aerosol optical depth, the radiative forcing and the climate response to volcanic eruptions differed between interactive and standard runs, and how these compare to observations and proxy records. In particular, we investigate in detail the differences in the response to the large-magnitude Krakatoa 1883 eruption between the two sets of runs. We also discuss differences for the 1979-2015 period where the forcing data in standard runs is directly constrained from satellite observations. Our results shed new light on uncertainties affecting the reconstruction of past volcanic forcing and highlight some of the benefits and disadvantages of using interactive stratospheric aerosol capabilities instead of a unique prescribed volcanic forcing dataset in CMIP’s historical runs.</p>


2011 ◽  
Vol 11 (8) ◽  
pp. 3937-3948 ◽  
Author(s):  
H. Bönisch ◽  
A. Engel ◽  
Th. Birner ◽  
P. Hoor ◽  
D. W. Tarasick ◽  
...  

Abstract. In this paper we present evidence that the observed increase in tropical upwelling after the year 2000 may be attributed to a change in the Brewer-Dobson circulation pattern. For this purpose, we use the concept of transit times derived from residual circulation trajectories and different in-situ measurements of ozone and nitrous dioxide. Observations from the Canadian midlatitude ozone profile record, probability density functions of in-situ N2O observations and a shift of the N2O-O3 correlation slopes, taken together, indicate that the increased upwelling in the tropics after the year 2000 appears to have triggered an intensification of tracer transport from the tropics into the extratropics in the lower stratosphere below about 500 K. This finding is corroborated by the fact that transit times along the shallow branch of the residual circulation into the LMS have decreased for the same time period (1993–2003). On a longer time scale (1979–2009), the transit time of the shallow residual circulation branch show a steady decrease of about −1 month/decade over the last 30 yr, while the transit times of the deep branch remain unchanged. This highlights that changes in the upwelling across the tropical tropopause are not sufficient as an indicator for changes in the entire Brewer-Dobson circulation.


2012 ◽  
Vol 3 (1) ◽  
pp. 279-323 ◽  
Author(s):  
D. Rothenberg ◽  
N. Mahowald ◽  
K. Lindsay ◽  
S. C. Doney ◽  
J. K. Moore ◽  
...  

Abstract. Volcanic eruptions induce a dynamical response in the climate system characterized by short-term, global reductions in both surface temperature and precipitation, as well as a response in biogeochemistry. The available observations of these responses to volcanic eruptions, such as to Pinatubo, provide a valuable method to compare against model simulations. Here, the Community Climate System Model Version 3 (CCSM3) reproduces the physical climate response to volcanic eruptions in a realistic way, as compared to direct observations from the 1991 eruption of Mount Pinatubo. The model biogeochemical response to eruptions is smaller in magnitude than observed, but because of the lack observations, it is not clear why or where the modeled carbon response is not strong enough. Comparison to other models suggests that this model response is much weaker in the tropical land; however the precipitation response in other models is not accurate, suggesting that other models could be getting the right response for the wrong reason. The underestimated carbon response in the model compared to observations could also be due to the ash and lava input of biogeochemical important species to the ocean, which are not included in the simulation. A statistically significant reduction in the simulated carbon dioxide growth rate is seen at the 90% level in the average of 12 large eruptions over the period 1870–2000, and the net uptake of carbon is primarily concentrated in the tropics with large spatial variability. In addition, a method for computing the volcanic response in model output without using a control ensemble is tested against a traditional methodology using two separate ensembles of runs; the method is found to produce similar results. These results suggest that not only is simulating volcanoes a good test of coupled carbon-climate models, but also that this test can be performed without a control simulation in cases where it is not practical to run separate ensembles with and without volcanic eruptions.


2020 ◽  
Author(s):  
Stefanie Kremser ◽  
Mike Harvey ◽  
Peter Kuma ◽  
Sean Hartery ◽  
Alexia Saint-Macary ◽  
...  

Abstract. Due to its remote location and extreme weather conditions, atmospheric in situ measurements are rare in the Southern Ocean. As a result, aerosol-cloud interactions in this region are poorly understood and remain a major source of uncertainty in climate models. This, in turn, contributes substantially to persistent biases in climate model simulations, numerical weather prediction models and reanalyses. It has been shown in previous studies that in situ and ground-based remote sensing measurements across the Southern Ocean are critical for complementing satellite data sets due to the importance of boundary layer and low-level cloud processes. These processes are poorly sampled by satellite-based measurements which are typically obscured by near-continuous overlying cloud cover observed in this region. In this work we present a comprehensive set of ship-based aerosol and meteorological observations collected on the TAN1802 voyage of R/V Tangaroa across the Southern Ocean, from Wellington, New Zealand, to the Ross Sea, Antarctica. The voyage was carried out from 8 February to 21 March, 2018. Many distinct, but contemporaneous, data sets were collected throughout the voyage. The compiled data sets include measurements from a range of instruments, such as (i) meteorological conditions at the sea surface and profile measurements; (ii) the size and concentration of particles; (iii) trace gases dissolved in the ocean surface such as dimethyl sulfide and carbonyl sulfide; (iv) and remotely sensed observations of low clouds. Here, we describe the voyage, the instruments, data processing, and provide a brief overview of some of the data products available. We encourage the scientific community to use these measurements for further analysis and model evaluation studies, in particular, for studies of Southern Ocean clouds, aerosol and their interaction. The data sets presented in this study are publicly available at https://doi.org/10.5281/zenodo.4060237 (Kremser et al. 2020).


Sign in / Sign up

Export Citation Format

Share Document